-
Notifications
You must be signed in to change notification settings - Fork 70
FXC-4927 enable source differentiation #3197
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
marcorudolphflex
wants to merge
1
commit into
develop
Choose a base branch
from
FXC-4927-enable-source-differentiation
base: develop
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
325 changes: 325 additions & 0 deletions
325
tests/test_components/autograd/numerical/test_autograd_source_numerical.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,325 @@ | ||
| from __future__ import annotations | ||
|
|
||
| import sys | ||
| from collections.abc import Mapping, Sequence | ||
| from dataclasses import dataclass | ||
| from typing import Callable | ||
|
|
||
| import autograd as ag | ||
| import autograd.numpy as anp | ||
| import numpy as np | ||
| import pytest | ||
|
|
||
| import tidy3d as td | ||
| import tidy3d.web as web | ||
|
|
||
|
|
||
| @pytest.fixture(autouse=True) | ||
| def _enable_local_cache(monkeypatch): | ||
| monkeypatch.setattr(td.config.local_cache, "enabled", True) | ||
|
|
||
|
|
||
| WVL0 = 1 | ||
| FREQ0 = td.C_0 / WVL0 | ||
| FWIDTH = FREQ0 / 10 | ||
| PULSE = td.GaussianPulse(freq0=FREQ0, fwidth=FWIDTH) | ||
| SIM_SIZE = (3 * WVL0, 3 * WVL0, 3 * WVL0) | ||
| MONITOR_CENTER = (-0.3, 0.1, 0.2) | ||
| MONITOR_SIZE = (0.5, 0.5, 0) | ||
| SOURCE_SIZE = (1, 1, 0.1) | ||
| SOURCE_CENTER = (0.1, 0.4, -0.2) | ||
| DATASET_SPACING = 0.1 | ||
|
|
||
|
|
||
| def _axis_coords(size: float, spacing: float) -> np.ndarray: | ||
| """Return 1D coords for an axis; if size==0, return a single point at 0.""" | ||
| if size <= 0: | ||
| return np.array([0.0]) | ||
| # Prefer rounding to avoid silent off-by-one due to float -> int truncation | ||
| n = max(2, int(np.round(size / spacing))) | ||
| return np.linspace(-size / 2, size / 2, n) | ||
|
|
||
|
|
||
| def _make_coords( | ||
| size_xyz: tuple[float, float, float], spacing: float, freq0: float | ||
| ) -> dict[str, object]: | ||
| x = _axis_coords(size_xyz[0], spacing) | ||
| y = _axis_coords(size_xyz[1], spacing) | ||
| z = _axis_coords(size_xyz[2], spacing) | ||
| return {"x": x, "y": y, "z": z, "f": [freq0]} | ||
|
|
||
|
|
||
| def _make_field_data( | ||
| amp: float, | ||
| shape: tuple[int, int, int, int], | ||
| *, | ||
| add_noise: bool, | ||
| noise_scale: float = 1.0, | ||
| seed: int = 12345, | ||
| ) -> np.ndarray: | ||
| """Uniform field with optional deterministic Gaussian noise.""" | ||
| base = amp * np.ones(shape, dtype=float) | ||
| if not add_noise: | ||
| return base | ||
| rng = np.random.RandomState(seed) | ||
| noise = rng.normal(size=shape) | ||
| return base + noise_scale * noise | ||
|
|
||
|
|
||
| def _make_field_dataset_from_amplitudes( | ||
| amplitudes: Sequence[float], | ||
| field_prefix: str, | ||
| coords: Mapping[str, object], | ||
| *, | ||
| add_noise: bool, | ||
| noise_scale: float = 1.0, | ||
| noise_seed: int = 12345, | ||
| ) -> td.FieldDataset: | ||
| x = np.asarray(coords["x"]) | ||
| y = np.asarray(coords["y"]) | ||
| z = np.asarray(coords["z"]) | ||
| shape = (len(x), len(y), len(z), 1) | ||
|
|
||
| field_components = {} | ||
| for amp, axis in zip(amplitudes, "xyz"): | ||
| data = _make_field_data( | ||
| amp, | ||
| shape, | ||
| add_noise=add_noise, | ||
| noise_scale=noise_scale, | ||
| seed=noise_seed, | ||
| ) | ||
| field_components[f"{field_prefix}{axis}"] = td.ScalarFieldDataArray(data, coords=coords) | ||
|
|
||
| return td.FieldDataset(**field_components) | ||
|
|
||
|
|
||
| def _make_custom_field_source_components( | ||
| amplitudes: Sequence[float], | ||
| field_prefix: str, | ||
| *, | ||
| add_noise: bool, | ||
| ) -> td.CustomFieldSource: | ||
| coords = _make_coords((SOURCE_SIZE[0], SOURCE_SIZE[1], 0.0), DATASET_SPACING, FREQ0) | ||
| field_dataset = _make_field_dataset_from_amplitudes( | ||
| amplitudes, | ||
| field_prefix, | ||
| coords, | ||
| add_noise=add_noise, | ||
| noise_scale=1.0, | ||
| noise_seed=12345, | ||
| ) | ||
| return td.CustomFieldSource( | ||
| center=SOURCE_CENTER, | ||
| size=(SOURCE_SIZE[0], SOURCE_SIZE[1], 0.0), | ||
| source_time=PULSE, | ||
| field_dataset=field_dataset, | ||
| ) | ||
|
|
||
|
|
||
| def _make_custom_current_source_components( | ||
| amplitudes: Sequence[float], | ||
| field_prefix: str, | ||
| *, | ||
| add_noise: bool, | ||
| ) -> td.CustomCurrentSource: | ||
| coords = _make_coords(SOURCE_SIZE, DATASET_SPACING, FREQ0) | ||
| field_dataset = _make_field_dataset_from_amplitudes( | ||
| amplitudes, | ||
| field_prefix, | ||
| coords, | ||
| add_noise=add_noise, | ||
| noise_scale=1.0, | ||
| noise_seed=12345, | ||
| ) | ||
| return td.CustomCurrentSource( | ||
| center=SOURCE_CENTER, | ||
| size=SOURCE_SIZE, | ||
| source_time=PULSE, | ||
| current_dataset=field_dataset, | ||
| ) | ||
|
|
||
|
|
||
| def angled_overlap_deg(v1, v2): | ||
| norm_v1 = np.linalg.norm(v1) | ||
| norm_v2 = np.linalg.norm(v2) | ||
|
|
||
| if np.isclose(norm_v1, 0.0) or np.isclose(norm_v2, 0.0): | ||
| if not (np.isclose(norm_v1, 0.0) and np.isclose(norm_v2, 0.0)): | ||
| return np.inf | ||
|
|
||
| return 0.0 | ||
|
|
||
| dot = np.minimum(1.0, np.sum((v1 / np.linalg.norm(v1)) * (v2 / np.linalg.norm(v2)))) | ||
| angle_deg = np.arccos(dot) * 180.0 / np.pi | ||
|
|
||
| return angle_deg | ||
|
|
||
|
|
||
| def _make_sim(source: td.Source) -> td.Simulation: | ||
| monitor = td.FieldMonitor( | ||
| name="field_monitor", | ||
| center=MONITOR_CENTER, | ||
| size=MONITOR_SIZE, | ||
| freqs=[FREQ0], | ||
| ) | ||
| return td.Simulation( | ||
| size=SIM_SIZE, | ||
| run_time=1e-12, | ||
| grid_spec=td.GridSpec.auto(min_steps_per_wvl=40, wavelength=WVL0), | ||
| sources=[source], | ||
| monitors=[monitor], | ||
| boundary_spec=td.BoundarySpec.all_sides(boundary=td.PML()), | ||
| ) | ||
|
|
||
|
|
||
| def _eval_objective(sim_data: td.SimulationData, field_component: str) -> float: | ||
| field_data = sim_data.load_field_monitor("field_monitor") | ||
| component = getattr(field_data, field_component, None) | ||
| if component is None: | ||
| return 0.0 | ||
| indexers = {} | ||
| for dim in ("x", "y", "z", "f"): | ||
| if dim in component.dims: | ||
| indexers[dim] = component.sizes[dim] // 2 | ||
| field_value = component.isel(**indexers).values | ||
| return anp.abs(field_value) ** 2 | ||
|
|
||
|
|
||
| def _eval_objective_components( | ||
| sim_data: td.SimulationData, field_components: Sequence[str] | ||
| ) -> float: | ||
| total = 0.0 | ||
| for component in field_components: | ||
| total += _eval_objective(sim_data, component) | ||
| return total | ||
|
|
||
|
|
||
| @dataclass(frozen=True) | ||
| class SourceCase: | ||
| name: str | ||
| monitor_components: tuple[str, str, str] | ||
| delta: float | ||
| make_source: Callable | ||
|
|
||
|
|
||
| VECTOR_SOURCE_CASES = [ | ||
| # ------------------ | ||
| # custom field source | ||
| # ------------------ | ||
| SourceCase( | ||
| name="custom_field_vec_e", | ||
| monitor_components=("Ex", "Ey", "Ez"), | ||
| delta=1e-4, | ||
| make_source=lambda amps, *, add_noise: _make_custom_field_source_components( | ||
| amps, "E", add_noise=add_noise | ||
| ), | ||
| ), | ||
| SourceCase( | ||
| name="custom_field_vec_h", | ||
| monitor_components=("Hx", "Hy", "Hz"), | ||
| delta=1e-4, | ||
| make_source=lambda amps, *, add_noise: _make_custom_field_source_components( | ||
| amps, "H", add_noise=add_noise | ||
| ), | ||
| ), | ||
| # ------------------ | ||
| # custom current source | ||
| # ------------------ | ||
| SourceCase( | ||
| name="custom_current_vec_e", | ||
| monitor_components=("Ex", "Ey", "Ez"), | ||
| delta=1e-4, | ||
| make_source=lambda amps, *, add_noise: _make_custom_current_source_components( | ||
| amps, "E", add_noise=add_noise | ||
| ), | ||
| ), | ||
| SourceCase( | ||
| name="custom_current_vec_h", | ||
| monitor_components=("Hx", "Hy", "Hz"), | ||
| delta=1e-4, | ||
| make_source=lambda amps, *, add_noise: _make_custom_current_source_components( | ||
| amps, "H", add_noise=add_noise | ||
| ), | ||
| ), | ||
| ] | ||
| PARAM_VECTORS = [ | ||
| pytest.param((1.0, -0.5, 0.25), id="p1"), | ||
| pytest.param((0.2, 0.7, -0.9), id="p2"), | ||
| ] | ||
|
|
||
| NOISE_CASES = [ | ||
| pytest.param(False, id="no_noise"), | ||
| pytest.param(True, id="noise"), | ||
| ] | ||
|
|
||
|
|
||
| @pytest.mark.numerical | ||
| @pytest.mark.parametrize("params", PARAM_VECTORS) | ||
| @pytest.mark.parametrize("add_noise", NOISE_CASES) | ||
| @pytest.mark.parametrize("case", VECTOR_SOURCE_CASES, ids=lambda case: case.name) | ||
| def test_custom_source_gradients( | ||
| _enable_local_cache, | ||
| tmp_path, | ||
| case, | ||
| params, | ||
| add_noise, | ||
| ): | ||
| delta = case.delta | ||
| monitor_components = case.monitor_components | ||
| label = f"{case.name}_{'noise' if add_noise else 'clean'}_{params!r}" | ||
|
|
||
| make_source = lambda amps: case.make_source(amps, add_noise=add_noise) | ||
|
|
||
| def objective_adj(ax, ay, az): | ||
| sim = _make_sim(make_source((ax, ay, az))) | ||
| sim_data = web.run( | ||
| sim, | ||
| task_name=f"{label}_adj", | ||
| path=tmp_path / f"{label}_adj.hdf5", | ||
| local_gradient=True, | ||
| verbose=False, | ||
| ) | ||
| return _eval_objective_components(sim_data, monitor_components) | ||
|
|
||
| grad_adjoint = np.array( | ||
| [ | ||
| ag.grad(objective_adj, 0)(*params), | ||
| ag.grad(objective_adj, 1)(*params), | ||
| ag.grad(objective_adj, 2)(*params), | ||
| ], | ||
| dtype=float, | ||
| ) | ||
|
|
||
| sims = {} | ||
| for idx, axis in enumerate("xyz"): | ||
| params_plus = list(params) | ||
| params_plus[idx] += delta | ||
| params_minus = list(params) | ||
| params_minus[idx] -= delta | ||
| sims[f"{label}_fd_{axis}_plus"] = _make_sim(make_source(tuple(params_plus))) | ||
| sims[f"{label}_fd_{axis}_minus"] = _make_sim(make_source(tuple(params_minus))) | ||
|
|
||
| sim_data_map = web.run_async( | ||
| sims, | ||
| path_dir=tmp_path, | ||
| local_gradient=False, | ||
| verbose=False, | ||
| ) | ||
|
|
||
| grad_fd = np.zeros(3, dtype=float) | ||
| for idx, axis in enumerate("xyz"): | ||
| obj_plus = _eval_objective_components( | ||
| sim_data_map[f"{label}_fd_{axis}_plus"], monitor_components | ||
| ) | ||
| obj_minus = _eval_objective_components( | ||
| sim_data_map[f"{label}_fd_{axis}_minus"], monitor_components | ||
| ) | ||
| grad_fd[idx] = (obj_plus - obj_minus) / (2 * delta) | ||
|
|
||
| angle = angled_overlap_deg(grad_adjoint, grad_fd) | ||
| print(f"[{label}] grad_adjoint = {grad_adjoint}", file=sys.stderr) | ||
| print(f"[{label}] grad_fd = {grad_fd}", file=sys.stderr) | ||
| print(f"[{label}] angle_deg = {angle}", file=sys.stderr) | ||
|
|
||
| assert angle < 5.0 | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.