This project consist of the following tasks:
- Fine-tune German BERT on Legal Data,
 - Create a minimal front-end that accepts a German sentence and shows its NER analysis.
 
- The entire process of fine-tuning German BERT on Legal Data is available in german_bert_ner.ipynb.
 - This notebook also contains abstract descriptions whenever deemed necessary.
 
To run this project on localhost, follow these simple steps:
- Create a virtual enviroment using:
 
conda create -n german_bert_ner python=3.9- Activate this virtual enviroment:
 
conda activate german_bert_ner- Clone this repo:
 
git clone https://github.com/harshildarji/German-NER-BERT.gitcdto repo:
cd German-NER-BERT- Install required packages using:
 
pip3 install -r requirements.txt- Next, we need three important files; 
model.pt,tag_values.pkl, andtokenizer.pkl. One can either generate these files by executing through german_bert_ner.ipynb which will take 45-60 minutes or download the latest versions of these files from my DropBox using: 
wget https://www.dropbox.com/s/vos8pqwmlbqe0wf/model.pt
wget https://www.dropbox.com/s/u2oojgmmprt0a9d/tag_values.pkl
wget https://www.dropbox.com/s/uj15pab78emefoq/tokenizer.pkl- Once above-mentioned files are generated/downloaded, run 
app.pyas: 
python3 app.py- 
Once
app.pyis successfully executed, head over tohttp://localhost:5000/. - 
In the provided text-area, input a German (law) sentence, for example:
1. Das Bundesarbeitsgericht ist gemäß § 9 Abs. 2 Satz 2 ArbGG iVm. § 201 Abs. 1 Satz 2 GVG für die beabsichtigte Klage gegen den Bund zuständig . - 
Final output:
 
- Leitner, Elena, Georg Rehm, and Julián Moreno-Schneider. "A dataset of german legal documents for named entity recognition." arXiv preprint arXiv:2003.13016 (2020).
 
