This repository contains the code used to reimplement our paper: Speculative Decoding: Exploiting Speculative Execution for Accelerating Seq2seq Generation.
Description | Model |
---|---|
wmt14.en-de | ar-verifier-base, nar-drafter-base (k=25) |
wmt14.de-en | ar-verifier-base, nar-drafter-base (k=25) |
wmt16.en-ro | ar-verifier-base, nar-drafter-base (k=25) |
wmt16.ro-en | ar-verifier-base, nar-drafter-base (k=25) |
- Python >= 3.7
- Pytorch >= 1.5.0
conda create -n specdec python=3.7
cd SpecDec
pip install --editable .
The datasets we used can be obtained following the script released by Mask-Predict. We release the bpe codes and our dicts in ./data
. The tokenized datasets are preprocessed as follows:
text=PATH_TO_YOUR_DATA
src=source_language
tgt=target_language
bin_path=PATH_TO_BIN_DIR
model_path=PATH_TO_MODEL_DICT_DIR
fairseq-preprocess --source-lang ${src} --target-lang ${tgt} \
--trainpref $text/train --validpref $text/valid --testpref $text/test \
--destdir ${bin_path} --workers 60 \
--srcdict ${model_path}/dict.${src}.txt \
--tgtdict ${model_path}/dict.${tgt}.txt
We recommend using the AR verifier's encoder to initialize the weights of the NAR drafter. For preparing the initialization checkpoints, check encoder_initial.py
.
The AR verifier of SpecDec is a standard Transformer that can be trained with fairseq:
fairseq-train ${bin_path} --arch transformer --share-all-embeddings \
--task translation --source-lang ${src} --target-lang ${tgt} \
--criterion label_smoothed_cross_entropy --dropout ${dropout} \
--label-smoothing 0.1 --lr ${lr} --clip-norm 3.0 \
--warmup-init-lr 1e-7 --min-lr 1e-9 --lr-scheduler inverse_sqrt \
--weight-decay 0.00001 --update-freq ${update_freq} --fp16 --seed ${seed} \
--warmup-updates ${warmup} --optimizer adam \
--adam-betas '(0.9, 0.98)' --max-tokens ${max_tokens} --max-epoch ${max_epoch} \
--save-dir ./checkpoints \
--eval-bleu \
--eval-bleu-args '{"beam":5}' \
--eval-bleu-detok moses \
--eval-bleu-remove-bpe \
--eval-bleu-print-samples \
--best-checkpoint-metric bleu --maximize-best-checkpoint-metric
For training the NAR drafter of SpecDec (check train.sh
):
python train.py ${bin_path} --arch block --noise block_mask --share-all-embeddings \
--criterion glat_loss --label-smoothing 0.1 --lr ${lr} --warmup-init-lr 1e-7 \
--stop-min-lr 1e-9 --lr-scheduler inverse_sqrt --warmup-updates ${warmup} \
--optimizer adam --adam-betas '(0.9, 0.999)' --adam-eps 1e-6 \
--task translation_lev_modified --max-tokens ${max_tokens} --weight-decay 0.01 \
--dropout ${dropout} --encoder-layers 6 --encoder-embed-dim 512 --decoder-layers 6 \
--decoder-embed-dim 512 --fp16 --max-source-positions 1000 \
--max-target-positions 1000 --max-update ${update} --seed ${seed} --clip-norm 5 \
--save-dir ./checkpoints --src-embedding-copy --log-interval 1000 \
--user-dir specdec_plugins --block-size ${size} --total-up ${update} \
--update-freq ${update_freq} --decoder-learned-pos --encoder-learned-pos \
--apply-bert-init --activation-fn gelu \
--restore-file ./checkpoints/initial_checkpoint.pt \
--reset-optimizer --reset-meters --reset-lr-scheduler --reset-dataloader
The hyperparameters of the NAR drafter are shown as follows:
Hyperparameters \ Datasets | WMT14 EN-DE | WMT16 EN-RO |
---|---|---|
learning rate | 0.0005 | 0.001 |
dropout | 0.1 | 0.2 |
warm up | 10000 | 4000 |
max update | 300K | 50K |
batch size (tokens) | 128K | 64K |
the effective batch size of tokens is calculated by GPU_NUM * MAX_TOKENS * UPDATE_FREQ.
For SpecDec (check inference.sh
, set beta=1
for identical results to AR greedy decoding):
python inference.py ${data_dir} --path ${checkpoint_path} --user-dir specdec_plugins \
--task translation_lev_modified --remove-bpe --max-sentences 20 \
--source-lang ${src} --target-lang ${tgt} --iter-decode-max-iter 0 \
--iter-decode-eos-penalty 0 --iter-decode-with-beam 1 --gen-subset test \
--AR-path ${AR_checkpoint_path} --input-path ${input_path} \
--output-path ${output_path} --block-size ${block_size} --beta ${beta} --tau ${tau} \
--batch ${batch} --beam ${beam} --strategy ${strategy}
We test the inference latency of SpecDec with batch 1 implementation, check
inference_paper.py
for details.check
inference_drafter.py
for inference with our NAR drafter only.
Calculating compound split bleu:
./ref.sh
We put the first three tokenized sentences of WMT14 EN-DE in data/wmt14.en-de/example.en
. Put this file in the input_path
of the inference script. The results below were obtained by running inference.sh
with inference_paper.py
(on 1 Nvidia P100 GPU, Pytorch 1.10, CUDA 11).
Model | Accepted Tokens (average) | Latency (s) |
---|---|---|
Fairseq (beam5) | 1.00 | 0.83 |
Fairseq (beam1) | 1.00 | 0.81 |
SpecDec | 6.18 | 0.27 |
You can find the translation results in ./output
.
Since there is no need to save intermediate variables during inference, SpecDec can achieve 3x~5x decoding speedup (by alternating NAR and AR decoding) with only ~300MiB of extra memory cost. Below is the nvidia-smi
memory cost comparison of AR and SpecDec, tested on WMT14 EN-DE:
Model \ Batch Size | Model States (Params) | 1 | 4 | 8 | 16 | 32 |
---|---|---|---|---|---|---|
Fairseq (beam1) | 232.38 | 1670 | 1712 | 1758 | 1844 | 2028 |
SpecDec | 469.75 (AR + NAR) | 1902 | 1938 | 2012 | 2108 | 2298 |
Extra Memory | 237.38 (NAR) | 232 | 226 | 254 | 264 | 270 |
This code is based on GLAT (https://github.com/FLC777/GLAT).
If you find the resources in this repository useful, please cite our paper:
@inproceedings{xia-etal-2023-speculative,
title = "Speculative Decoding: Exploiting Speculative Execution for Accelerating Seq2seq Generation",
author = "Xia, Heming and
Ge, Tao and
Wang, Peiyi and
Chen, Si-Qing and
Wei, Furu and
Sui, Zhifang",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.257",
pages = "3909--3925",
}