Skip to content

这是一个faster-rcnn的pytorch实现的库,可以利用voc数据集格式的数据进行训练。

License

Notifications You must be signed in to change notification settings

jiayoujiang/faster-rcnn-pytorch

 
 

Repository files navigation

Faster-Rcnn:Two-Stage目标检测模型在Pytorch当中的实现


目录

  1. 仓库更新 Top News
  2. 性能情况 Performance
  3. 所需环境 Environment
  4. 文件下载 Download
  5. 预测步骤 How2predict
  6. 训练步骤 How2train
  7. 评估步骤 How2eval
  8. 参考资料 Reference

Top News

2022-04:进行了大幅度的更新,支持step、cos学习率下降法、支持adam、sgd优化器选择、支持学习率根据batch_size自适应调整、新增图片裁剪。
BiliBili视频中的原仓库地址为:https://github.com/bubbliiiing/faster-rcnn-pytorch/tree/bilibili

2021-10:进行了大幅度的更新,增加了大量注释、增加了大量可调整参数、对代码的组成模块进行修改、增加fps、视频预测、批量预测等功能。

性能情况

训练数据集 权值文件名称 测试数据集 输入图片大小 mAP 0.5:0.95 mAP 0.5
VOC07+12 voc_weights_resnet.pth VOC-Test07 - - 80.36
VOC07+12 voc_weights_vgg.pth VOC-Test07 - - 77.46

所需环境

torch == 1.2.0

文件下载

训练所需的voc_weights_resnet.pth或者voc_weights_vgg.pth以及主干的网络权重可以在百度云下载。
voc_weights_resnet.pth是resnet为主干特征提取网络用到的;
voc_weights_vgg.pth是vgg为主干特征提取网络用到的;
链接: https://pan.baidu.com/s/1S6wG8sEXBeoSec95NZxmlQ
提取码: 8mgp

VOC数据集下载地址如下,里面已经包括了训练集、测试集、验证集(与测试集一样),无需再次划分:
链接: https://pan.baidu.com/s/1YuBbBKxm2FGgTU5OfaeC5A
提取码: uack

训练步骤

a、训练VOC07+12数据集

  1. 数据集的准备
    本文使用VOC格式进行训练,训练前需要下载好VOC07+12的数据集,解压后放在根目录

  2. 数据集的处理
    修改voc_annotation.py里面的annotation_mode=2,运行voc_annotation.py生成根目录下的2007_train.txt和2007_val.txt。

  3. 开始网络训练
    train.py的默认参数用于训练VOC数据集,直接运行train.py即可开始训练。

  4. 训练结果预测
    训练结果预测需要用到两个文件,分别是frcnn.py和predict.py。我们首先需要去frcnn.py里面修改model_path以及classes_path,这两个参数必须要修改。
    model_path指向训练好的权值文件,在logs文件夹里。
    classes_path指向检测类别所对应的txt。

    完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。

b、训练自己的数据集

  1. 数据集的准备
    本文使用VOC格式进行训练,训练前需要自己制作好数据集,
    训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
    训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。

  2. 数据集的处理
    在完成数据集的摆放之后,我们需要利用voc_annotation.py获得训练用的2007_train.txt和2007_val.txt。
    修改voc_annotation.py里面的参数。第一次训练可以仅修改classes_path,classes_path用于指向检测类别所对应的txt。
    训练自己的数据集时,可以自己建立一个cls_classes.txt,里面写自己所需要区分的类别。
    model_data/cls_classes.txt文件内容为:

cat
dog
...

修改voc_annotation.py中的classes_path,使其对应cls_classes.txt,并运行voc_annotation.py。

  1. 开始网络训练
    训练的参数较多,均在train.py中,大家可以在下载库后仔细看注释,其中最重要的部分依然是train.py里的classes_path。
    classes_path用于指向检测类别所对应的txt,这个txt和voc_annotation.py里面的txt一样!训练自己的数据集必须要修改!
    修改完classes_path后就可以运行train.py开始训练了,在训练多个epoch后,权值会生成在logs文件夹中。

  2. 训练结果预测
    训练结果预测需要用到两个文件,分别是frcnn.py和predict.py。在frcnn.py里面修改model_path以及classes_path。
    model_path指向训练好的权值文件,在logs文件夹里。
    classes_path指向检测类别所对应的txt。

    完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。

预测步骤

a、使用预训练权重

  1. 下载完库后解压,在百度网盘下载frcnn_weights.pth,放入model_data,运行predict.py,输入
img/street.jpg
  1. 在predict.py里面进行设置可以进行fps测试和video视频检测。

b、使用自己训练的权重

  1. 按照训练步骤训练。
  2. 在frcnn.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类
_defaults = {
    #--------------------------------------------------------------------------#
    #   使用自己训练好的模型进行预测一定要修改model_path和classes_path!
    #   model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
    #   如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
    #--------------------------------------------------------------------------#
    "model_path"    : 'model_data/voc_weights_resnet.pth',
    "classes_path"  : 'model_data/voc_classes.txt',
    #---------------------------------------------------------------------#
    #   网络的主干特征提取网络,resnet50或者vgg
    #---------------------------------------------------------------------#
    "backbone"      : "resnet50",
    #---------------------------------------------------------------------#
    #   只有得分大于置信度的预测框会被保留下来
    #---------------------------------------------------------------------#
    "confidence"    : 0.5,
    #---------------------------------------------------------------------#
    #   非极大抑制所用到的nms_iou大小
    #---------------------------------------------------------------------#
    "nms_iou"       : 0.3,
    #---------------------------------------------------------------------#
    #   用于指定先验框的大小
    #---------------------------------------------------------------------#
    'anchors_size'  : [8, 16, 32],
    #-------------------------------#
    #   是否使用Cuda
    #   没有GPU可以设置成False
    #-------------------------------#
    "cuda"          : True,
}
  1. 运行predict.py,输入
img/street.jpg
  1. 在predict.py里面进行设置可以进行fps测试和video视频检测。

评估步骤

a、评估VOC07+12的测试集

  1. 本文使用VOC格式进行评估。VOC07+12已经划分好了测试集,无需利用voc_annotation.py生成ImageSets文件夹下的txt。
  2. 在frcnn.py里面修改model_path以及classes_path。model_path指向训练好的权值文件,在logs文件夹里。classes_path指向检测类别所对应的txt。
  3. 运行get_map.py即可获得评估结果,评估结果会保存在map_out文件夹中。

b、评估自己的数据集

  1. 本文使用VOC格式进行评估。
  2. 如果在训练前已经运行过voc_annotation.py文件,代码会自动将数据集划分成训练集、验证集和测试集。如果想要修改测试集的比例,可以修改voc_annotation.py文件下的trainval_percent。trainval_percent用于指定(训练集+验证集)与测试集的比例,默认情况下 (训练集+验证集):测试集 = 9:1。train_percent用于指定(训练集+验证集)中训练集与验证集的比例,默认情况下 训练集:验证集 = 9:1。
  3. 利用voc_annotation.py划分测试集后,前往get_map.py文件修改classes_path,classes_path用于指向检测类别所对应的txt,这个txt和训练时的txt一样。评估自己的数据集必须要修改。
  4. 在frcnn.py里面修改model_path以及classes_path。model_path指向训练好的权值文件,在logs文件夹里。classes_path指向检测类别所对应的txt。
  5. 运行get_map.py即可获得评估结果,评估结果会保存在map_out文件夹中。

Reference

https://github.com/chenyuntc/simple-faster-rcnn-pytorch
https://github.com/eriklindernoren/PyTorch-YOLOv3
https://github.com/BobLiu20/YOLOv3_PyTorch

About

这是一个faster-rcnn的pytorch实现的库,可以利用voc数据集格式的数据进行训练。

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%