Skip to content

Commit

Permalink
Merge pull request #109 from jmejia8/develop
Browse files Browse the repository at this point in the history
Fix some typos
  • Loading branch information
jmejia8 authored Feb 13, 2025
2 parents e2f23a5 + 233129e commit 61d50d6
Show file tree
Hide file tree
Showing 7 changed files with 24 additions and 24 deletions.
2 changes: 1 addition & 1 deletion docs/src/algorithms/combinatorial.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ GRASP
```

```@docs
Metaheuristics.GreedyRandomizedContructor
Metaheuristics.GreedyRandomizedConstructor
```

```@docs
Expand Down
10 changes: 5 additions & 5 deletions src/algorithms/combinatorial/GRASP/GRASP.jl
Original file line number Diff line number Diff line change
Expand Up @@ -23,9 +23,9 @@ Greedy Randomized Adaptive Search Procedure.
- `initial`: an initial solution if necessary.
- `constructor` parameters for the greedy constructor.
- `local_search` the local search strategy `BestImprovingSearch()` (default) and `FirstImprovingSearch()`.
- `local_search` the local search strategy `BestImproveSearch()` (default) and `FirstImproveSearch()`.
See [`GreedyRandomizedContructor`](@ref)
See [`GreedyRandomizedConstructor`](@ref)
# Example: Knapsack Problem
Expand Down Expand Up @@ -59,8 +59,8 @@ function main()
candidates = rand(search_space)
# define each GRASP component
constructor = MH.GreedyRandomizedContructor(;candidates, instance, α = 0.95)
local_search = MH.BestImprovingSearch()
constructor = MH.GreedyRandomizedConstructor(;candidates, instance, α = 0.95)
local_search = MH.BestImproveSearch()
neighborhood = MH.TwoOptNeighborhood()
grasp = MH.GRASP(;constructor, local_search)
Expand All @@ -76,7 +76,7 @@ end
main()
```
"""
function GRASP(;initial=nothing, constructor=nothing, local_search=BestImprovingSearch(),
function GRASP(;initial=nothing, constructor=nothing, local_search=BestImproveSearch(),
options = Options(), information=Information())
# TODO
if isnothing(constructor)
Expand Down
10 changes: 5 additions & 5 deletions src/algorithms/combinatorial/GRASP/constructor.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
"""
GreedyRandomizedContructor(;candidates, instance, α, rng)
GreedyRandomizedConstructor(;candidates, instance, α, rng)
This structure can be used to use the Greedy Randomized Contructor.
Expand All @@ -20,7 +20,7 @@ end
See also [`compute_cost`](@ref) and [`GRASP`](@ref)
"""
Base.@kwdef struct GreedyRandomizedContructor
Base.@kwdef struct GreedyRandomizedConstructor
candidates
instance = nothing
α::Float64 = 0.6
Expand All @@ -33,7 +33,7 @@ end
Compute the cost for each candidate in `candidates`, for given `constructor` and
provided `instance`.
See also [`GreedyRandomizedContructor`](@ref) and [`GRASP`](@ref)
See also [`GreedyRandomizedConstructor`](@ref) and [`GRASP`](@ref)
"""
function compute_cost(candidates, constructor, instance)
@warn "Define compute_cost for\nconstructor=$constructor\ninstance=$instance"
Expand All @@ -45,9 +45,9 @@ end
Constructor procedure for GRASP.
See also [`GreedyRandomizedContructor`](@ref), [`compute_cost`](@ref) and [`GRASP`](@ref)
See also [`GreedyRandomizedConstructor`](@ref), [`compute_cost`](@ref) and [`GRASP`](@ref)
"""
function construct(constructor::GreedyRandomizedContructor)
function construct(constructor::GreedyRandomizedConstructor)
candidates = constructor.candidates |> copy
α = constructor.α
# create empty solution S
Expand Down
8 changes: 4 additions & 4 deletions src/algorithms/combinatorial/LocalSearch/LocalSearchUtils.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
abstract type AbstractLocalSearch end
struct BestImprovingSearch <: AbstractLocalSearch end
struct FirstImprovingSearch <: AbstractLocalSearch end
struct BestImproveSearch <: AbstractLocalSearch end
struct FirstImproveSearch <: AbstractLocalSearch end

include("neighborhood.jl")

Expand All @@ -10,7 +10,7 @@ function local_search(x, neighbourhood::Neighborhood, ls::AbstractLocalSearch, p
local_search(x, iter, ls, problem)
end

function local_search(x, neighbourhood::InternalNeighborhood, ::BestImprovingSearch, problem)
function local_search(x, neighbourhood::InternalNeighborhood, ::BestImproveSearch, problem)
best = create_solution(copy(x), problem)
for xnew in neighbourhood
sol = create_solution(xnew, problem)
Expand All @@ -21,7 +21,7 @@ function local_search(x, neighbourhood::InternalNeighborhood, ::BestImprovingSea
best
end

function local_search(x, neighbourhood::InternalNeighborhood, ::FirstImprovingSearch, problem)
function local_search(x, neighbourhood::InternalNeighborhood, ::FirstImproveSearch, problem)
initial = create_solution(copy(x), problem)
for xnew in neighbourhood
sol = create_solution(xnew, problem)
Expand Down
6 changes: 3 additions & 3 deletions src/algorithms/combinatorial/VNS/VND.jl
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ Variable Neighborhood Descent.
- `initial`: Use this parameter to provide an initial solution (optional).
- `neighborhood`: Neighborhood structure.
- `local_search` the local search strategy `BestImprovingSearch()` (default) and `FirstImprovingSearch()`.
- `local_search` the local search strategy `BestImproveSearch()` (default) and `FirstImproveSearch()`.
# Example: Knapsack Problem
Expand Down Expand Up @@ -46,7 +46,7 @@ function main()
# list the neighborhood structures
neighborhood = [MyKPNeighborhood(1), MyKPNeighborhood(2), MyKPNeighborhood(3)]
local_search = MH.BestImprovingSearch()
local_search = MH.BestImproveSearch()
# instantiate VNS
vnd = MH.VND(;neighborhood, local_search)
Expand All @@ -57,7 +57,7 @@ end
main()
```
"""
function VND(;initial = nothing, neighborhood = nothing, local_search = BestImprovingSearch(),
function VND(;initial = nothing, neighborhood = nothing, local_search = BestImproveSearch(),
options=Options(), information=Information())

parameters = VND(initial, neighborhood, local_search)
Expand Down
6 changes: 3 additions & 3 deletions src/algorithms/combinatorial/VNS/VNS.jl
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ General Variational Neighborhood Search.
- `initial`: Use this parameter to provide an initial solution (optional).
- `neighborhood_shaking`: Neighborhood structure for the shaking step.
- `neighborhood_local`: Neighborhood structure for the local search.
- `local_search`: the local search strategy `BestImprovingSearch()` (default) and `FirstImprovingSearch()`.
- `local_search`: the local search strategy `BestImproveSearch()` (default) and `FirstImproveSearch()`.
- `neighborhood_change`: The procedure for changing among neighborhood structures (default `SequentialChange()`).
Expand Down Expand Up @@ -62,7 +62,7 @@ function main()
# list the neighborhood structures
neighborhood_shaking = [MyKPNeighborhood(6), MyKPNeighborhood(5), MyKPNeighborhood(4)]
neighborhood_local = [MyKPNeighborhood(3), MyKPNeighborhood(2), MyKPNeighborhood(1)]
local_search = MH.BestImprovingSearch()
local_search = MH.BestImproveSearch()
# instantiate VNS
vnd = MH.VNS(;neighborhood_shaking, neighborhood_local, local_search, options=MH.Options(verbose=true))
Expand All @@ -74,7 +74,7 @@ main()
```
"""
function VNS(;initial=nothing,neighborhood_shaking=nothing, neighborhood_local=nothing,
local_search=FirstImprovingSearch(), neighborhood_change=SequentialChange(),
local_search=FirstImproveSearch(), neighborhood_change=SequentialChange(),
options=Options(), information=Information())

# TODO
Expand Down
6 changes: 3 additions & 3 deletions test/combinatorial.jl
Original file line number Diff line number Diff line change
Expand Up @@ -153,7 +153,7 @@ end
# list the neighborhood structures
neighborhood_shaking = [MyKPNeighborhood(6), MyKPNeighborhood(5), MyKPNeighborhood(4)]
neighborhood_local = [MyKPNeighborhood(3), MyKPNeighborhood(2), MyKPNeighborhood(1)]
local_search = Metaheuristics.FirstImprovingSearch()
local_search = Metaheuristics.FirstImproveSearch()
# instantiate VNS
vnd = Metaheuristics.VNS(;neighborhood_shaking, neighborhood_local, local_search, options)

Expand All @@ -166,8 +166,8 @@ end
###########################################
candidates = rand(search_space)
instance = KPInstance(profit, weight, capacity)
constructor = Metaheuristics.GreedyRandomizedContructor(;candidates, instance, α = 0.95)
local_search = Metaheuristics.BestImprovingSearch()
constructor = Metaheuristics.GreedyRandomizedConstructor(;candidates, instance, α = 0.95)
local_search = Metaheuristics.BestImproveSearch()
neighborhood = Metaheuristics.TwoOptNeighborhood()
grasp = GRASP(;constructor, local_search)

Expand Down

0 comments on commit 61d50d6

Please sign in to comment.