Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

SciPy 1.15.0 support #376

Merged
merged 2 commits into from
Jan 3, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion lmo/_poly.py
Original file line number Diff line number Diff line change
Expand Up @@ -113,7 +113,8 @@ def eval_sh_jacobi( # noqa: C901
) / 6

# don't use `eval_sh_jacobi`: https://github.com/scipy/scipy/issues/18988
return sps.eval_jacobi(n, a, b, 2 * x - 1)
out = sps.eval_jacobi(n, a, b, 2 * x - 1)
return out.item() if isinstance(out, np.generic) or np.isscalar(x) else out


def peaks_jacobi(n: int, a: float, b: float) -> onp.ArrayND[_Float]:
Expand Down
20 changes: 11 additions & 9 deletions lmo/distributions/_genlambda.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,4 @@
"""
Probability distributions, compatible with [`scipy.stats`][scipy.stats].
"""
"""Probability distributions, compatible with [`scipy.stats`][scipy.stats]."""

from __future__ import annotations

Expand Down Expand Up @@ -62,6 +60,9 @@ def _genlambda_qdf(q: _XT, b: float, d: float, f: float) -> _XT:
return (1 + f) * q ** (b - 1) + (1 - f) * (1 - q) ** (d - 1) # pyright: ignore[reportReturnType]


# pyright: reportIncompatibleMethodOverride=false


def _genlambda_cdf0( # noqa: C901
x: float,
b: float,
Expand Down Expand Up @@ -133,7 +134,7 @@ def _genlambda_cdf0( # noqa: C901

class genlambda_gen(rv_continuous):
@override
def _argcheck(self, /, b: _F8, d: _F8, f: _F8) -> np.bool_: # pyright: ignore[reportIncompatibleMethodOverride]
def _argcheck(self, /, b: _F8, d: _F8, f: _F8) -> np.bool_:
return np.isfinite(b) & np.isfinite(d) & (f >= -1) & (f <= 1)

@override
Expand All @@ -153,23 +154,24 @@ def _fitstart(
/,
data: _ArrF8,
args: tuple[float, float, float] | None = None,
) -> tuple[float, float, float, float, float]:
) -> tuple[_F8, _F8, _F8, _F8, _F8]:
# Arbitrary, but the default f=1 is a bad start
return super()._fitstart(data, args or (1.0, 1.0, 0.0)) # pyright: ignore[reportReturnType]
loc, scale, b, d, f = super()._fitstart(data, args or (1.0, 1.0, 0.0))
return loc, scale, b, d, f

@override
def _pdf(self, /, x: _XT, b: float, d: float, f: float) -> _XT: # pyright: ignore[reportIncompatibleMethodOverride]
def _pdf(self, /, x: _XT, b: float, d: float, f: float) -> _XT:
return 1 / self._qdf(self._cdf(x, b, d, f), b, d, f) # pyright: ignore[reportReturnType]

@override
def _cdf(self, /, x: _XT, b: float, d: float, f: float) -> _XT: # pyright: ignore[reportIncompatibleMethodOverride]
def _cdf(self, /, x: _XT, b: float, d: float, f: float) -> _XT:
return _genlambda_cdf(x, b, d, f)

def _qdf(self, /, q: _XT, b: float, d: float, f: float) -> _XT:
return _genlambda_qdf(q, b, d, f)

@override
def _ppf(self, /, q: _XT, b: float, d: float, f: float) -> _XT: # pyright: ignore[reportIncompatibleMethodOverride]
def _ppf(self, /, q: _XT, b: float, d: float, f: float) -> _XT:
return _genlambda_ppf(q, b, d, f)

@override
Expand Down
9 changes: 7 additions & 2 deletions lmo/distributions/_kumaraswamy.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,6 @@
from typing import Any, Final, TypeAlias, final

import numpy as np
import numpy.typing as npt
import optype.numpy as onp
import scipy.special as sps

Expand Down Expand Up @@ -81,5 +80,11 @@ def _entropy(self, a: float, b: float) -> float:
return (1 - 1 / b) + (1 - 1 / a) * harmonic(b) - math.log(a * b)

@override
def _munp(self, /, n: int | npt.NDArray[np.intp], a: float, b: float) -> _FloatND:
def _munp(
self,
/,
n: int | onp.ArrayND[np.intp],
a: float,
b: float,
) -> _Float | _FloatND:
return b * sps.beta(1 + n / a, b)
18 changes: 11 additions & 7 deletions lmo/distributions/_wakeby.py
Original file line number Diff line number Diff line change
Expand Up @@ -173,9 +173,12 @@ def _wakeby_sf0(x: _F8, /, b: _F8, d: _F8, f: _F8) -> _F8: # noqa: C901
_wakeby_lm: Final = get_lm_func("wakeby")


# pyright: reportIncompatibleMethodOverride = false


class wakeby_gen(lmt.rv_continuous):
@override
def _argcheck(self, /, b: _F8, d: _F8, f: _F8) -> bool | np.bool_: # pyright: ignore[reportIncompatibleMethodOverride]
def _argcheck(self, /, b: _F8, d: _F8, f: _F8) -> bool | np.bool_:
return (
np.isfinite(b)
& np.isfinite(d)
Expand Down Expand Up @@ -207,28 +210,29 @@ def _fitstart(
/,
data: _ArrF8,
args: tuple[float, float, float] | None = None,
) -> tuple[float, float, float, float, float]:
) -> tuple[_F8, _F8, _F8, _F8, _F8]:
# Arbitrary, but the default f=1 is a bad start
return super()._fitstart(data, args or (1.0, 1.0, 0.5)) # pyright: ignore[reportReturnType]
loc, scale, b, d, f = super()._fitstart(data, args or (1.0, 1.0, 0.5))
return loc, scale, b, d, f

@override
def _pdf(self, /, x: _XT, b: float, d: float, f: float) -> _XT: # pyright: ignore[reportIncompatibleMethodOverride]
def _pdf(self, /, x: _XT, b: float, d: float, f: float) -> _XT:
# application of the inverse function theorem
return 1 / self._qdf(self._cdf(x, b, d, f), b, d, f) # pyright: ignore[reportReturnType]

@override
def _cdf(self, /, x: _XT, b: float, d: float, f: float) -> _XT: # pyright: ignore[reportIncompatibleMethodOverride]
def _cdf(self, /, x: _XT, b: float, d: float, f: float) -> _XT:
return 1 - _wakeby_sf(x, b, d, f)

def _qdf(self, /, q: _XT, b: float, d: float, f: float) -> _XT:
return _wakeby_qdf(q, b, d, f)

@override
def _ppf(self, /, q: _XT, b: float, d: float, f: float) -> _XT: # pyright: ignore[reportIncompatibleMethodOverride]
def _ppf(self, /, q: _XT, b: float, d: float, f: float) -> _XT:
return _wakeby_isf(1 - q, b, d, f)

@override
def _isf(self, /, q: _XT, b: float, d: float, f: float) -> _XT: # pyright: ignore[reportIncompatibleMethodOverride]
def _isf(self, /, q: _XT, b: float, d: float, f: float) -> _XT:
return _wakeby_isf(q, b, d, f)

@override
Expand Down
2 changes: 1 addition & 1 deletion lmo/ostats.py
Original file line number Diff line number Diff line change
Expand Up @@ -145,5 +145,5 @@ def from_cdf(
msg = "F must lie between 0 and 1"
raise ValueError(msg)

out = betainc(i + 1, n - i, p)
out = betainc(float(i + 1), float(n - i), p)
return out.item() if out.ndim == 0 and np.isscalar(F) else out
8 changes: 5 additions & 3 deletions lmo/special.py
Original file line number Diff line number Diff line change
Expand Up @@ -120,17 +120,19 @@ def gamma2(
- [`scipy.special.gammaincc`][scipy.special.gammaincc] for the
regularized gamma function \( Q(a,\ x) \).
"""
x_ = np.asarray(x)
if a == 0:
return sps.expm1(x, out=out)
out_ = np.expm1(x_, out=out)
return out_.item() if x_.ndim == 0 and np.isscalar(x) else out_

g = sps.gamma(a)

if out is not None:
out = sps.gammaincc(a, x, out=out)
sps.gammaincc(a, x_, out=out)
np.multiply(out, g, out=out)
return out

res = sps.gammaincc(a, x)
res = sps.gammaincc(a, x_)
res *= g
return res

Expand Down
38 changes: 18 additions & 20 deletions lmo/theoretical/_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,11 +13,13 @@

import lmo.typing as lmt

__all__ = ("ALPHA", "QUAD_LIMIT", "l_coef_factor", "l_const", "tighten_cdf_support")
__all__ = "ALPHA", "QUAD_LIMIT", "l_coef_factor", "l_const", "tighten_cdf_support"

###

_Tss = ParamSpec("_Tss")

###

ALPHA: Final = 0.1
QUAD_LIMIT: Final = 100
Expand All @@ -36,17 +38,14 @@ def l_const(r: int, s: float, t: float, k: int = 0) -> float:
return 1 / (r - 1)

# math.lgamma is faster than scipy.special.loggamma.
if r + s + t <= 20:
v = gamma(r + s + t + 1) / (gamma(r + s) * gamma(r + t))
elif r + s + t <= 128:
v = exp(lgamma(r + s + t + 1) - lgamma(r + s) - lgamma(r + t))
rst = r + s + t
if rst <= 20:
v = gamma(rst + 1) / (gamma(r + s) * gamma(r + t))
elif rst <= 128:
v = exp(lgamma(rst + 1) - lgamma(r + s) - lgamma(r + t))
else:
return exp(
lgamma(r + s + t + 1)
- lgamma(r + s)
- lgamma(r + t)
+ lgamma(r - k)
- log(r)
lgamma(rst + 1) - lgamma(r + s) - lgamma(r + t) + lgamma(r - k) - log(r)
)

return factorial(r - 1 - k) / r * v
Expand All @@ -57,15 +56,18 @@ def l_coef_factor(
s: float = 0,
t: float = 0,
) -> onp.ArrayND[npc.floating]:
r_ = r if isinstance(r, np.ndarray) else int(r)
if s == t == 0:
return np.sqrt(2 * r - 1)
return np.sqrt(2 * r_ - 1)

assert s + t > -1

import scipy.special as sps

rst = r + s + t
return np.sqrt((rst + r - 1) * sps.beta(r + s, r + t) / sps.beta(r, rst)) * r / rst
rs = r_ + s
rt = r_ + t
rst = rs + t
return np.sqrt((rs + rt - 1) * sps.beta(rs, rt) / sps.beta(r_, rst)) * r_ / rst


def tighten_cdf_support(
Expand All @@ -75,16 +77,12 @@ def tighten_cdf_support(
"""Attempt to tighten the support by checking some common bounds."""
a, b = (-np.inf, np.inf) if support is None else map(float, support)

# attempt to tighten the default support by checking some common bounds
if cdf(0) == 0:
# left-bounded at 0 (e.g. weibull)
if cdf(0) == 0: # left-bounded at 0 (e.g. weibull)
a = 0

if (u1 := cdf(1)) == 0:
# left-bounded at 1 (e.g. pareto)
if (u1 := cdf(1)) == 0: # left-bounded at 1 (e.g. pareto)
a = 1
elif u1 == 1:
# right-bounded at 1 (e.g. beta)
elif u1 == 1: # right-bounded at 1 (e.g. beta)
b = 1

return a, b
Expand Down
Loading
Loading