Skip to content

WIP [DeepSeek R1] Add DeepSeekV3 Base + Weight Conversion #2171

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
241 changes: 241 additions & 0 deletions keras_hub/src/models/deepseek_r1/deepseek_backbone.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,241 @@
import logging
import time
from dataclasses import dataclass
from typing import Literal

import keras
from keras import ops

from keras_hub.src.api_export import keras_hub_export

# TODO: Replace with keras.layers.RMSNormalization
from keras_hub.src.layers.modeling.rms_normalization import RMSNormalization
from keras_hub.src.models.backbone import Backbone
from keras_hub.src.models.deepseek_r1.deepseek_layers import Block
from keras_hub.src.models.deepseek_r1.deepseek_layers import (
ColumnParallelLinear,
)
from keras_hub.src.models.deepseek_r1.deepseek_layers import Embedding
from keras_hub.src.models.deepseek_r1.deepseek_layers import (
precompute_freqs_cis,
)

world_size = 1
rank = 0
block_size = 128
gemm_impl: Literal["bf16", "fp8"] = "bf16"
attn_impl: Literal["naive", "absorb"] = "absorb"


@dataclass
class ModelArgs:
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Comes from the original impl - currently here for sanity checking. Will be removed in lieu of json configs.

"""
Data class for defining model arguments and hyperparameters.

Attributes:
max_batch_size (int): Maximum batch size.
max_seq_len (int): Maximum sequence length.
dtype (Literal["bf16", "fp8"]): Data type for computations.
vocab_size (int): Vocabulary size.
dim (int): Model dimension.
inter_dim (int): Intermediate dimension for MLP layers.
moe_inter_dim (int): Intermediate dimension for MoE layers.
n_layers (int): Number of transformer layers.
n_dense_layers (int): Number of dense layers in the model.
n_heads (int): Number of attention heads.
n_routed_experts (int): Number of routed experts for MoE layers.
n_shared_experts (int): Number of shared experts for MoE layers.
n_activated_experts (int): Number of activated experts in MoE layers.
n_expert_groups (int): Number of expert groups.
n_limited_groups (int): Number of limited groups for MoE routing.
score_func (Literal["softmax", "sigmoid"]): Scoring function for MoE routing.
route_scale (float): Scaling factor for routing scores.
q_lora_rank (int): LoRA rank for query projections.
kv_lora_rank (int): LoRA rank for key-value projections.
qk_nope_head_dim (int): Dimension for query-key projections without positional embeddings.
qk_rope_head_dim (int): Dimension for query-key projections with rotary embeddings.
v_head_dim (int): Dimension for value projections.
original_seq_len (int): Original sequence length.
rope_theta (float): Base for rotary positional encoding.
rope_factor (float): Scaling factor for extended sequence lengths.
beta_fast (int): Fast beta correction factor.
beta_slow (int): Slow beta correction factor.
mscale (float): Scaling factor for extended attention.
"""

max_batch_size: int = 8
max_seq_len: int = 4096 * 4
vocab_size: int = 102400
dim: int = 2048
inter_dim: int = 10944
moe_inter_dim: int = 1408
# n_layers: int = 27
n_layers: int = 1
n_dense_layers: int = 1
n_heads: int = 16
# moe
n_routed_experts: int = 64
n_shared_experts: int = 2
n_activated_experts: int = 6
n_expert_groups: int = 1
n_limited_groups: int = 1
score_func: Literal["softmax", "sigmoid"] = "softmax"
route_scale: float = 1.0
# mla
q_lora_rank: int = 0
kv_lora_rank: int = 512
qk_nope_head_dim: int = 128
qk_rope_head_dim: int = 64
v_head_dim: int = 128
# yarn
original_seq_len: int = 4096
rope_theta: float = 10000.0
rope_factor: float = 40
beta_fast: int = 32
beta_slow: int = 1
mscale: float = 1.0


@dataclass
class ModelArgsFull:
max_batch_size: int = 1
max_seq_len: int = 163840
vocab_size: int = 129280
dim: int = 7168
inter_dim: int = 18432
moe_inter_dim: int = 2048
n_layers: int = 61
n_dense_layers: int = 1
n_heads: int = 128
# moe
n_routed_experts: int = 256
n_shared_experts: int = 1
n_activated_experts: int = 8
n_expert_groups: int = 8
n_limited_groups: int = 8 # do we need this?
score_func: Literal["softmax", "sigmoid"] = "sigmoid"
route_scale: float = 2.5
# mla
q_lora_rank: int = 1536
kv_lora_rank: int = 512
qk_nope_head_dim: int = 128
qk_rope_head_dim: int = 64
v_head_dim: int = 128
# yarn
original_seq_len: int = 4096
rope_theta: float = 10000.0
rope_factor: float = 40
beta_fast: int = 32
beta_slow: int = 1
mscale: float = 1.0


@keras_hub_export("keras_hub.models.DeepSeekV3Backbone")
class DeepSeekV3Backbone(Backbone):
def __init__(self, args: ModelArgs):
super().__init__()
self.max_seq_len = args.max_seq_len
self.embed = Embedding(args.vocab_size, args.dim)
self.blocks = []
for layer_id in range(args.n_layers):
logging.info(f"Layer {layer_id}")
self.blocks.append(
Block(
layer_id,
args.dim,
args.n_heads,
args.q_lora_rank,
args.kv_lora_rank,
args.qk_nope_head_dim,
args.qk_rope_head_dim,
args.v_head_dim,
args.inter_dim,
args.n_dense_layers,
args.n_routed_experts,
args.n_activated_experts,
args.n_expert_groups,
args.n_limited_groups,
args.score_func,
args.route_scale,
args.moe_inter_dim,
args.n_shared_experts,
args.max_seq_len,
args.original_seq_len,
args.mscale,
args.rope_factor,
args.max_batch_size,
)
)
self.norm = RMSNormalization(args.dim)
self.head = ColumnParallelLinear(args.dim, args.vocab_size)
self.freqs_cis = precompute_freqs_cis(
args.qk_rope_head_dim,
args.max_seq_len,
args.beta_fast,
args.beta_slow,
args.rope_theta,
args.rope_factor,
args.original_seq_len,
)

def call(self, tokens, start_pos: int = 0):
"""
Forward pass for the Transformer model.

Args:
tokens (torch.Tensor): Input tensor of token IDs with shape
(batch_size, seq_len).
start_pos (int, optional): Starting position in the sequence
for rotary embeddings. Defaults to 0.

Returns:
torch.Tensor: Logits tensor of shape (batch_size, vocab_size).
"""
seqlen = ops.shape(tokens)[1]
h = self.embed(tokens)
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
mask = None
if seqlen > 1:
mask = ops.full((seqlen, seqlen), float("-inf"))
mask = ops.triu(mask, k=1)
for layer in self.blocks:
h = layer(h, start_pos=start_pos, freqs_cis=freqs_cis, mask=mask)
h = self.norm(h)[:, -1]
logits = self.head(h)
return logits


if __name__ == "__main__":
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sanity check main call - will be removed.

keras.config.set_dtype_policy("mixed_float16")
args = ModelArgsFull()
x = keras.random.randint((1, 128), 0, args.vocab_size)
logging.info("Creating model...")
model = DeepSeekV3Backbone(args)
logging.info(f"{model.summary()}")
logging.info("Running dummy input...")
outs = model(x)
logging.info(f"{model.summary()}")
logging.info(
f"Output size for dummy input (shape of (1, 128)): {outs.size()}"
)

total_tokens_generated = 0
total_generation_time = 0.0

steps = 10
logging.info(f"Generating {steps} tokens sequentially")
x = keras.random.randint((1, 128), 0, args.vocab_size, seed=42)

for i in tqdm(range(steps)):
start_time = time.time()
outs = model(x)
res_token = outs.argmax(1).unsqueeze(0)
x = ops.concatenate([x, res_token], 1)
end_time = time.time() - start_time
total_generation_time += end_time
total_tokens_generated += 1

tokens_per_second = total_tokens_generated / total_generation_time
logging.info(f"Total tokens generated: {total_tokens_generated}")
logging.info(f"Total generation time: {total_generation_time:.2f} seconds")
logging.info(f"Tokens per second: {tokens_per_second:.2f}")
Loading
Loading