Upscale large TIFFs using chunk-based image processing and sharpening
Helper package for the (Spatialxe)[https://github.com/nf-core/spatialxe] pipeline.
The package can be used as a pre-processing step in the image-based segmentation approach in the spatialxe pipeline and is available as a local nextflow module in the pipeline.
For a standalone use case scenario
$ resolift --help
usage: ResoLift [-h] -i INPUT -o OUTPUT [-s SCALE] [-c CHUNK_SIZE] [-p SHARPEN]
Upscale large TIFF images using chunk-based processing and sharpening.
optional arguments:
-h, --help show this help message and exit
-i INPUT, --input INPUT
Path to the input TIFF file.
-o OUTPUT, --output OUTPUT
Path to save the upscaled TIFF file.
-s SCALE, --scale SCALE
Scaling factor for resolution increase (default: 2.0).
-c CHUNK_SIZE, --chunk-size CHUNK_SIZE
Number of rows to process at a time (default: 1024).
-p SHARPEN, --sharpen SHARPEN
Strength of the sharpening effect (default: 1.0).
Simplest command line use case
$ resolift --input <input.tif> --output <output.tif>
To increase chunk size for very large tiff (default: 1024)
$ resolift --input <input.tif> --output <output.tif> --chunk-size 2048
To increase sharpness strength (default: 0.5)
$ resolift --input <input.tif> --output <output.tif> --sharpen 1.0
To use resolift as a python package
>>> import resolift as rs
>>> resolift.TiffUpscaler(input_path, output_path, scale_factor2.0, chunk_size=1024, sharpen_strength=0.5)