Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 12 additions & 10 deletions src/wordvector.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -192,16 +192,18 @@ Rcpp::List cpp_word2vec(TokensPtr xptr,
Rprintf(" ...complete\n");

Rcpp::List values;
if (type == 3) { // dm
values = Rcpp::List::create(
Rcpp::Named("word") = get_words(word2vec),
Rcpp::Named("doc") = get_documents(word2vec)
);
} else if (type == 4) { // dbow
values = Rcpp::List::create(
Rcpp::Named("doc") = get_documents(word2vec)
);
} else { // cbow or dbow
if (doc2vec) {
if (type == 4) { // dbow
values = Rcpp::List::create(
Rcpp::Named("doc") = get_documents(word2vec)
);
} else { // dm
values = Rcpp::List::create(
Rcpp::Named("word") = get_words(word2vec),
Rcpp::Named("doc") = get_documents(word2vec)
);
}
} else { // cbow, sg, dm
values = Rcpp::List::create(
Rcpp::Named("word") = get_words(word2vec)
);
Expand Down
69 changes: 69 additions & 0 deletions tests/testthat/test-word2vec.R
Original file line number Diff line number Diff line change
Expand Up @@ -145,6 +145,75 @@ test_that("textmodel_word2vec works", {
"textmodel_word2vec does not have the layer for documents"
)

# DM
expect_output(
wov3 <- textmodel_word2vec(toks, dim = 50, iter = 10, min_count = 2, sample = 1,
type = "dm", verbose = TRUE),
"Training distributed memory model with 50 dimensions"
)
expect_equal(
class(wov3),
c("textmodel_word2vec", "textmodel_wordvector")
)
expect_true(
wov3$use_ns
)
expect_identical(
wov3$ns_size, 5L
)
expect_identical(
wov3$window, 5L
)
expect_identical(
dim(wov3$values$word), c(5360L, 50L)
)
expect_null(
wov3$values$doc
)
expect_identical(
dim(wov3$weights), c(5360L, 50L)
)
expect_identical(
wov3$sample, 1.0
)
expect_equal(
wov3$min_count, 2L
)
expect_false(
wov3$normalize
)
expect_identical(
featfreq(dfm_trim(dfm(toks), 2)),
wov3$frequency
)
expect_true(
wov3$tolower
)

expect_output(
print(wov3),
paste(
"",
"Call:",
"textmodel_word2vec(x = toks, dim = 50, type = \"dm\", min_count = 2, ",
" iter = 10, sample = 1, verbose = TRUE)",
"",
"50 dimensions; 5,360 words.", sep = "\n"), fixed = TRUE
)
expect_equal(
class(expect_output(print(wov3))),
class(wov3)
)

expect_equal(
rownames(probability(wov3, c("good", "bad"), layer = "words", mode = "numeric")),
rownames(wov3$values$word)
)

expect_error(
probability(wov3, c("good", "bad"), layer = "documents", mode = "numeric"),
"textmodel_word2vec does not have the layer for documents"
)
})


Expand Down