-
Notifications
You must be signed in to change notification settings - Fork 26
feat: Simproc series part III: A concrete intro to writing simprocs #100
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
Paul-Lez
wants to merge
5
commits into
leanprover-community:master
Choose a base branch
from
Paul-Lez:simprocs-final-post
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,244 @@ | ||
| --- | ||
| author: 'Yaël Dillies, Paul Lezeau' | ||
| category: 'Metaprogramming' | ||
| date: 2025-04-16 12:00:00 UTC+01:00 | ||
| description: 'How to write a simproc in practice' | ||
| has_math: true | ||
| link: '' | ||
| slug: simprocs-tutorial | ||
| tags: 'simp, simproc, meta' | ||
| title: 'Simprocs, the process made simple' | ||
| --- | ||
|
|
||
| This is the final post in our simproc series. | ||
| In our first two posts, we gave an informal introduction to the concept of a *simproc*, | ||
| and a brief overview of the inner workings of the `simp` tactic. | ||
| The aim of this final post is to build on this by demonstrating how Lean users can write their own simprocs. | ||
|
|
||
| > As for the previous post, we will assume that the reader has some exposure to metaprogramming in Lean. | ||
| > In addition, some familiarity with the `Qq` library will be helpful, but not necessary for most of this post. | ||
|
|
||
| First we explain the syntax and general structure of a simproc. | ||
| Then we walk through an explicit example of a simproc for a simple custom function. | ||
|
|
||
| # The simproc syntax | ||
|
|
||
| Let's see how to declare a simproc. | ||
|
|
||
| The basic syntax for declaring a simproc is | ||
| ```lean | ||
| simproc_decl mySimproc (theExprToMatch _ _) := fun e ↦ do | ||
| write_simproc_here | ||
| ``` | ||
| > See the next section for how to actually replace `write_simproc_here` by the correct meta code. | ||
|
|
||
| To add `mySimproc` to the standard simp set, replace `simproc_decl` by `simproc`: | ||
| ```lean | ||
| simproc mySimproc (theExprToMatch _ _) := fun e ↦ do | ||
| write_simproc_here | ||
| ``` | ||
|
|
||
| When calling a simproc in `simp` (if it is not in the standard simp set), | ||
| one can specify that this is a preprocedure by adding `↓` in front of the simproc identifier: | ||
| `simp [↓mySimproc]`. (Note that this also works when passing lemmas to `simp`!) | ||
|
|
||
| To add `mySimproc` to the standard simp set as a preprocedure (recall that postprocedure is the default), do | ||
| ```lean | ||
| simproc ↓ mySimproc (theExprToMatch _ _) := fun e ↦ do | ||
| write_simproc_here | ||
| ``` | ||
| Note that being a pre/postprocedure is a property of simprocs *in a simp set*, not of bare simprocs. | ||
| Therefore, there is no corresponding `simproc_decl ↓` syntax. | ||
|
|
||
| # Simproc walkthrough | ||
|
|
||
| Let's write a simproc for a simple recursive function. | ||
| We choose a custom function `revRange`, which to a natural number `n` returns the list of the first `n` natural numbers in decreasing order: | ||
|
|
||
| ```lean | ||
| def revRange : Nat → List Nat | ||
| | 0 => [] | ||
| | n + 1 => n :: revRange n | ||
|
|
||
| #eval revRange 5 -- [4, 3, 2, 1, 0] | ||
| ``` | ||
|
|
||
| Our goal will be to make `simp` evaluate `revRange` when its input is an explicit numeral, eg | ||
| ```lean | ||
| example : revRange 0 = [] := by simp [???] | ||
| example : revRange 2 = [1, 0] := by simp [???] | ||
| example : revRange 5 = [4, 3, 2, 1, 0] := by simp [???] | ||
| ``` | ||
|
|
||
| Note two features of `revRange` that one should *not* expect from all functions that one might want to evaluate on explicit inputs: | ||
| * It is **recursive**: One can compute `revRange n` by recursion on `n`. | ||
| Even more precisely, `revRange n` represents its own partial computation. | ||
| * `revRange` is definitionally equal to what we want to unfold it to. | ||
| This has two consequences: | ||
| * The two examples in the code snippet above can be proved by `rfl`, but of course doing so defeats the point of this blogpost. | ||
| * We could actually write a *dsimproc* for `revRange`, which is to `dsimp` what a simproc is to `simp`. | ||
| Implementation-wise, the main difference is that a dsimproc requires the new simplified expression to be definitionally equal to the previous one. | ||
|
|
||
| Let's now present three approaches to evaluating `revRange` on numerals: | ||
| * The baseline **simproc-less approach** which only uses lemmas and no simproc. | ||
| * The **dsimproc approach**, where we (possibly recursively) construct in the meta world the evaluated expression, | ||
| but leave the proof to be `rfl` (here the "d" stands for "definitional equality"). | ||
| * The **simproc approach**, where we (possibly recursively) construct the evaluated expression and the proof simultaneously. | ||
|
|
||
| ## The simproc-less approach | ||
|
|
||
| Before writing a simproc, let us first see how one could approach the computation of `revRange` using only lemmas. | ||
|
|
||
| `revRange` is a recursive function. | ||
| Therefore it can be evaluated on numerals simply by writing out the recurrence relations we wish to reduce along: | ||
| ```lean | ||
| lemma revRange_zero : revRange 0 = [] := rfl | ||
| lemma revRange_succ (n : Nat) : revRange (n + 1) = n :: revRange n := rfl | ||
| ``` | ||
|
|
||
| Then we can complete our code snippet like so: | ||
| ```lean | ||
| example : revRange 0 = [] := by simp [revRange_zero, revRange_succ] | ||
| example : revRange 2 = [1, 0] := by simp [revRange_zero, revRange_succ] | ||
| example : revRange 5 = [4, 3, 2, 1, 0] := by simp [revRange_zero, revRange_succ] | ||
| ``` | ||
|
|
||
| Note: Since `revRange` is defined by recursion, `simp [revRange]` would also be a valid proof here. | ||
| But we are trying not to rely on the definition of `revRange`. | ||
|
|
||
| **Pros**: | ||
| * Doesn't require writing any meta code. | ||
| * Doesn't require the recursion relations to be definitional (although they are in the case of `revRange`). | ||
|
|
||
| **Cons**: | ||
| * Requires adding two lemmas to your simp call instead of one (assuming we do not want these lemmas in the default simp set). | ||
| * Simplifying `revRange n` for a big input numeral `n` might involve a lot of simplification steps. | ||
| In this specific case, the number of simplification steps is linear in `n`. | ||
| Simplification steps matter because each one increases the size of the proof term. | ||
| * `revRange n` could find itself (partially) evaluated even if `n` isn't a numeral. | ||
| Eg `simp [revRange_zero, revRange_succ]` on `⊢ revRange (n + 3) = revRange (3 + n)` will result in `⊢ n + 2 :: n + 1 :: n :: revRange n = revRange (3 + n)`. | ||
| This is in general highly undesirable. | ||
|
|
||
| ## The definitional approach | ||
|
|
||
| In cases where the evaluation is definitionally equal to the original expression, one may write a dsimproc instead of a simproc. | ||
| The syntax to declare a dsimproc is rather to simprocs, with a small difference: | ||
| we now need to return a [`DStep`](https://leanprover-community.github.io/mathlib4_docs/find/?pattern=Lean.Meta.Simp.DStep#doc) instead of a `Step`; | ||
| in practice this amounts to providing the expression our program has produced without providing the proof (indeed, this is just `rfl`!) | ||
|
|
||
| <span style="color:red">**TODO**: We were explaining `DStep` before, but now it comes after.</span> | ||
|
|
||
| To compute `revRange` using the dsimproc approach, we can do the following: | ||
| ```lean | ||
| dsimproc_decl revRangeCompute (revRange _) := fun e => do | ||
| -- Extract the natural number from the expression | ||
| let_expr revRange m ← e | return .continue | ||
| -- Recover the natural number as a term of type `Nat` | ||
| let some n := m.nat? | return .continue | ||
| let l := revRange n | ||
| -- Convert the list to an `Expr` | ||
| return .visit <| Lean.toExpr l | ||
| ``` | ||
|
|
||
| For a bit more on dsimprocs, see the extras below. | ||
|
|
||
| **Pros**: | ||
| * Requires writing a single simproc. | ||
| * Assuming the type of the expression to be evaluated implements `ToExpr`, there is no need to reevaluate the expression manually in the meta world. | ||
|
|
||
| **Cons**: | ||
| * The function needs to be computable to be evaluated automatically in the meta world. | ||
| * The produced `rfl` proof could be heavy. | ||
| * Only works when the evaluation and conversion back to an expression is definitionally equal to the original expression. | ||
|
|
||
| ## The propositional approach | ||
|
|
||
| A more general approach would be to manually construct the proof term we need to provide. | ||
| In our case, we can do this in a recursive manner. | ||
| ``` | ||
| open Qq | ||
|
|
||
| private theorem revRange_succ_eq_of_revRange_eq {n : ℕ} {l : List ℕ} | ||
| (hl : revRange n = l) : revRange (n+1) = n :: l := by | ||
| induction n with | ||
| | zero => aesop | ||
| | succ n h => rw [←hl]; rfl | ||
|
|
||
| open Qq in | ||
| simproc_decl revRangeComputeProp (revRange _) := fun e => do | ||
| let_expr revRange m ← e | return .continue | ||
| let some n ← Nat.fromExpr? m | return .continue | ||
| let rec go (n : ℕ) : (l : Q(List ℕ)) × Q(revRange $n = $l) := | ||
| match n with | ||
| | 0 => ⟨q(([] : List ℕ)), q(revRange_zero)⟩ | ||
| | n + 1 => | ||
| let ⟨l, pf⟩ := go n | ||
| ⟨q($n :: $l), q(revRange_succ_eq_of_revRange_eq $pf)⟩ | ||
| let ⟨l, pf⟩ := go n | ||
| return .visit { expr := l, proof? := pf } | ||
| ``` | ||
|
|
||
| **Pros**: | ||
| * Works regardless of definitional equalities. | ||
| See [`Nat.reduceDvd`](https://leanprover-community.github.io/mathlib4_docs/find/?pattern=Nat.reduceDvd#doc) introduced in [the previous blog post](https://leanprover-community.github.io/blog/posts/fantastic-simprocs/) for another compelling example: | ||
| `a ∣ b` is *not* defined as `a % b = 0`, yet the `Nat.reduceDvd` simproc can decide `a ∣ b` by computing `a % b = 0`. | ||
|
|
||
| **Cons**: | ||
| * Might involve a fair bit of meta code, a lot of which could *feel* like evaluating the function. | ||
| * Simplifying `revRange n` for a big input numeral `n` might produce a large proof term. | ||
| In this specific case, the size of the produced proof term will be linear in `n`. | ||
|
|
||
| # Extras | ||
|
|
||
| ## How to discharge subgoals | ||
|
|
||
| Often, when applying a theorem, we may need to provide additional proof terms for the hypotheses of the result. One useful feature of | ||
| `simprocs` is that we can also call the discharger tactic provided to simp. Which discharger was provided by the user is part of the state stored by the `SimpM` monad, and can be accessed by the tactic via [`Methods`](https://leanprover-community.github.io/mathlib4_docs/find/?pattern=Lean.Meta.Simp.Methods#doc) (roughly speaking, the part of the state that encodes which methods `simp` can use to simplify an expression). `Methods` implements a function `discharge? : Expr → Option Expr` such that `discharge? goal` is equal to `some pf` if the discharger found a proof `pf` of `goal`, and none otherwise. Finally, to access the current "state" of `Methods`, one can use [`getMethods`](https://leanprover-community.github.io/mathlib4_docs/find/?pattern=Lean.Meta.Simp.getMethods#doc). | ||
|
|
||
| In the following example, we implement a simproc for [`Nat.factorization`](https://leanprover-community.github.io/mathlib4_docs/find/?pattern=Nat.factorization#doc) that simplifies expressions of the form `(a * b).factorization ` to `a.factorization + b.factorization` whenever a proof that `a` and `b` are both non-zero can be found by the discharger. | ||
|
|
||
| ```lean | ||
| import Mathlib | ||
|
|
||
| open Qq Lean.Meta.Simp | ||
|
|
||
| simproc_decl factorizationMul (Nat.factorization (_ * _)) := .ofQ fun u α e => do | ||
| match u, α, e with | ||
| | 1, ~q(ℕ →₀ ℕ), ~q(Nat.factorization ($a * $b)) => | ||
| -- Try to discharge the goal `a ≠ 0` | ||
| let some ha ← ((← getMethods).discharge? q($a ≠ 0)) | return .continue | ||
| --Convert the resulting proof to a `Qq` expression for convenience (see #23510) | ||
| let ⟨0, ~q($a ≠ 0), ~q($ha)⟩ ← inferTypeQ ha | return .continue | ||
| -- Try to discharge the goal `b ≠ 0` | ||
| let some hb ← ((← getMethods).discharge? q($b ≠ 0)) | return .continue | ||
| --Convert the resulting proof to a `Qq` expression for convenience | ||
| let ⟨0, ~q($b ≠ 0), ~q($hb)⟩ ← inferTypeQ hb | return .continue | ||
| let e' := q((Nat.factorization $a) + (Nat.factorization $b)) | ||
| let pf := q(Nat.factorization_mul $ha $hb) | ||
| return .visit { expr := e', proof? := pf } | ||
| | _, _, _ => return .continue | ||
|
|
||
| set_option trace.Meta.Tactic.simp true in | ||
| example : Nat.factorization (2 * 3) = fun₀ | 2 => 1 | 3 => 1 := by | ||
| simp (disch := decide) only [factorizationMul] | ||
| guard_target = Nat.factorization 2 + Nat.factorization 3 = fun₀ | 2 => 1 | 3 => 1 | ||
| sorry | ||
| ``` | ||
|
|
||
| ## How to match on numerals | ||
|
|
||
| Often when writing a simproc to perform a computation, it can be useful to extract quantities from the expression we are manipulating. | ||
| The easiest case is perhaps that of `Nat` literals. | ||
| Given a numeral by `e : Expr`, there are various ways of recovering the corresponding term of type `Nat`: | ||
| - [`Lean.Expr.rawNatLit?`](https://leanprover-community.github.io/mathlib4_docs/find/?pattern=Lean.Expr.rawNatLit?#doc). | ||
| - [`Lean.Expr.natLit!`](https://leanprover-community.github.io/mathlib4_docs/find/?pattern=Lean.Expr.rawNatLit!#doc) | ||
| - [`Lean.Expr.nat?`](https://leanprover-community.github.io/mathlib4_docs/find/?pattern=Lean.Expr.nat?#doc) | ||
| - [`Nat.fromExpr?`](https://leanprover-community.github.io/mathlib4_docs/find/?pattern=Nat.fromExpr?#doc) | ||
|
|
||
| <span style="color:red">**TODO(Paul)**: Let's explain the differences, and show some examples of where behaviour differs. </span> | ||
|
|
||
| ## How to handle a non-recursive definition | ||
|
|
||
| Write a type of partial computations that is recursive. | ||
|
|
||
| <span style="color:red">**TODO(Paul)**</span> | ||
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.