Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
140 changes: 111 additions & 29 deletions hypermapper/local_search.py
Original file line number Diff line number Diff line change
Expand Up @@ -616,6 +616,69 @@ def parallel_optimization_function(
for key, column in col_of_keys.items()
}

def sequential_local_search(
input_list,
output_list,
input_params,
param_space,
optimization_function_parameters,
proc,
):
sys.stdout.write_to_logfile("Running sequential_local_search \n")
while len(input_list) > 0:
config = input_list.pop(0)
if config is None:
break
iteration_data_array = {}
configuration = config["config"]
idx = config["idx"]
sys.stdout.write_to_logfile("Starting local search on configuration: " + str(configuration) + "\n")
while configuration is not None:
neighbors = get_neighbors(configuration, param_space)
neighbors = data_tuples_to_dict_list(neighbors, input_params)
function_values, feasibility_indicators = optimization_function(
configurations=neighbors, **optimization_function_parameters
)
function_values_size = len(function_values)
new_data_array = concatenate_list_of_dictionaries(
neighbors[:function_values_size]
)
new_data_array[scalarization_key] = function_values
if enable_feasible_predictor:
new_data_array[feasible_parameter] = feasibility_indicators
iteration_data_array = concatenate_data_dictionaries(
iteration_data_array, new_data_array
)
"""
The out of budget stopping criterion is removed for now, since it's not deemed relevant for this algorithm!
"""
if enable_feasible_predictor:
best_neighbor = get_min_feasible_configurations(
new_data_array, 1, scalarization_key, feasible_parameter
)
else:
best_neighbor = get_min_configurations(
new_data_array, 1, scalarization_key
)

for key in configuration:
configuration[key] = [configuration[key]]
if are_configurations_equal(best_neighbor, configuration, input_params):
sys.stdout.write_to_logfile("Local minimum found: " + str(best_neighbor) + "\n")
output_list.append(
{"data_array": iteration_data_array}
)
configuration = None
else:
sys.stdout.write_to_logfile((
"Replacing configuration by best neighbor: "
+ str(best_neighbor)
+ "\n"
))
configuration = {
key: value[0] for key, value in best_neighbor.items()
}

def parallel_multistart_local_search(
input_queue,
output_queue,
Expand Down Expand Up @@ -692,33 +755,53 @@ def parallel_multistart_local_search(
+ str(number_of_configurations)
+ "\n"
)
input_queue = JoinableQueue()
output_queue = Queue()
# puts each configuration in a queue to be evaluated in parallel
for idx in range(number_of_configurations):
input_queue.put(
{
"config": get_single_configuration(local_search_configurations, idx),
"idx": idx,
}
)
sys.stdout.write_to_logfile((f"{idx}, \n"))

for i in range(number_of_cpus):
input_queue.put(None)

result_array = {}
if number_of_cpus == 1:
parallel_multistart_local_search(
input_queue,
output_queue,
input_list = []
output_list = []
# puts each configuration in a list to be evaluated in sequence
for idx in range(number_of_configurations):
input_list.append(
{
"config": get_single_configuration(local_search_configurations, idx),
"idx": idx,
}
)
sys.stdout.write_to_logfile((f"{idx}, \n"))

sequential_local_search(
input_list,
output_list,
input_params,
param_space,
optimization_function_parameters,
0,
)
input_queue.join()

for i in range(number_of_configurations):
result = output_list.pop(0)
result_array = concatenate_data_dictionaries(result_array, result["data_array"])
data_array = concatenate_data_dictionaries(result_array, data_array)

else:

input_queue = JoinableQueue()
output_queue = Queue()
# puts each configuration in a queue to be evaluated in parallel
for idx in range(number_of_configurations):
input_queue.put(
{
"config": get_single_configuration(local_search_configurations, idx),
"idx": idx,
}
)
sys.stdout.write_to_logfile((f"{idx}, \n"))

for i in range(number_of_cpus):
input_queue.put(None)


processes = [
Process(
target=parallel_multistart_local_search,
Expand All @@ -739,19 +822,18 @@ def parallel_multistart_local_search(
process.start()
input_queue.join()

result_array = {}
for i in range(number_of_configurations):
result = output_queue.get()
sys.stdout.write_to_logfile(result["logstring"])
result_array = concatenate_data_dictionaries(result_array, result["data_array"])
data_array = concatenate_data_dictionaries(result_array, data_array)
for i in range(number_of_configurations):
result = output_queue.get()
sys.stdout.write_to_logfile(result["logstring"])
result_array = concatenate_data_dictionaries(result_array, result["data_array"])
data_array = concatenate_data_dictionaries(result_array, data_array)

input_queue.close()
output_queue.close()
input_queue.close()
output_queue.close()

if number_of_cpus != 1:
for i in range(len(processes)):
processes[i].join()
if number_of_cpus != 1:
for i in range(len(processes)):
processes[i].join()

local_search_time = datetime.datetime.now()
sys.stdout.write_to_logfile(
Expand Down