Skip to content
Open
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
208 changes: 208 additions & 0 deletions c_src/bayesian.c
Original file line number Diff line number Diff line change
@@ -0,0 +1,208 @@
#ifndef BAYESIAN_H
#define BAYESIAN_H

#include <stdlib.h>
#include <math.h>
#include <time.h>

#include "random.h"
#include "random_forest.h"
#include "datapoint.h"

#define RANDOM_SAMPLE_PROBABILITY 0.05
#define NUMBER_OF_TREES 10
#define EVO_POPULATION 50
#define MUTATE_PROB 0.1

typedef double (*OptFunc)(const double*);

void get_random(const size_t n, const double* lower, const double* upper, double* x) {
for (size_t i=0; i<n; ++i) {
x[i] = lower[i] + (upper[i] - lower[i]) * random_f64();
}
}

static inline double pdf(const double x) {
return exp(-x*x/2.0) / sqrt(2.0 * M_PI);
}

static inline double cdf(const double x) {
return 0.5 * (1.0 + erf(x / M_SQRT2));
}

static inline double ei(const double y, const double sdev, const double fmin) {
const double delta = fmin - y;
const double z = delta / sdev;
return delta + sdev * pdf(z) + delta * cdf(z);
}

void optimize_forest(RandomForest* forest, const double* lower, const double* upper,
double* out, const size_t dims, const double fmin, DataPoint** points) {

// This will be our workhorse x
DataPoint* p = points[EVO_POPULATION];

double best = -INFINITY;

// Initialize the workspace with random points.
for (size_t i=0; i<EVO_POPULATION; ++i) {
get_random(dims, lower, upper, points[i]->x);
double variance;
double y = randomforest_full_predict(forest, points[i]->x, &variance);
points[i]->y = ei(y, sqrt(variance), fmin);

if (points[i]->y > best) {
best = points[i]->y;
for (size_t j=0; j<dims; ++j) { out[j] = points[i]->x[j]; }
}
}

size_t oldest = 0;
for (size_t i=0; i<10000; ++i) {

DataPoint* p1 = points[0];
DataPoint* p2 = points[1];
if (p2->y > p1->y) {
DataPoint* temp = p1;
p1 = p2;
p2 = temp;
}

for (size_t j=2; j<EVO_POPULATION; ++j) {
if (points[j]->y > p1->y) {
p2 = p1;
p1 = points[j];
} else if (points[j]->y > p2->y) {
p2 = points[j];
}
}

const double sum = p1->y + p2->y;
const double p1_prob = p1->y / sum;

for (size_t j=0; j<dims; ++j) {
p->x[j] = (random_f64() < p1_prob) ? p1->x[j] : p2->x[j];
}

for (size_t j=0; j<dims; ++j) {
if (random_f64() < MUTATE_PROB) {
p->x[j] = lower[j] + (upper[j] - lower[j]) * random_f64();
}
}

double variance;
double y = randomforest_full_predict(forest, p->x, &variance);
p->y = ei(y, sqrt(variance), fmin);

if (p->y > best) {
best = p->y;
for (size_t j=0; j<dims; ++j) { out[j] = p->x[j]; }
}

DataPoint* temp = points[oldest];
points[oldest] = p;
p = temp;

oldest = (oldest + 1) % EVO_POPULATION;

}

// Make sure to update the backing pointer array, since p may have been swapped
points[EVO_POPULATION] = p;
}

void shuffle_points(DataPoint** points, const size_t n) {
for (size_t i=0; i<n-1; ++i) {
const size_t j = i + random_u64() % (n-i);
DataPoint* temp = points[i];
points[i] = points[j];
points[j] = temp;
}
}

double bayesian_optimization(OptFunc f, const double* lower, const double* upper, double* x, const size_t dims,
const size_t doe, const size_t iter) {

const size_t dp_size = sizeof(DataPoint) + dims * sizeof(double);

// Alloc backing data for all points (1 per iteration)
DataPoint* data = calloc(iter, dp_size);

// Alloc pointers that can point into backing data points
DataPoint** points = calloc(iter, sizeof(DataPoint*));

// Assign each pointer to an allocated data point
points[0] = data;
for (size_t i=1; i<iter; ++i) { points[i] = (void*)points[i-1] + dp_size; }

// Alloc work space for local search algorithm
DataPoint* workspace = calloc(EVO_POPULATION + 1, dp_size);

// Pointers into workspace
DataPoint** workspace_points = calloc(EVO_POPULATION + 1, sizeof(DataPoint*));

workspace_points[0] = workspace;
for (size_t i=1; i<EVO_POPULATION+1; ++i) {
workspace_points[i] = (void*)workspace_points[i-1] + dp_size;
}

// This will correspond to the point in the parameter x
double best_val = INFINITY;

// Initialize DoE phase as a latin hypercube
for (size_t i=0; i<dims; ++i) {
for (size_t j=0; j<doe; ++j) {
points[j]->x[i] = lower[i] + (upper[i] - lower[i]) * (j + random_f64()) / doe;
}
shuffle_points(points, doe);
}

// Evaluate DoE points
for (size_t i=0; i<doe; ++i) {
const double y = f(points[i]->x);
points[i]->y = y;

if (y < best_val) {
best_val = y;
for (size_t j=0; j<dims; ++j) { x[j] = points[i]->x[j]; }
}
}

double mean_iter = 0.0;

for (size_t i=doe; i<iter; ++i) {

if (random_f64() < RANDOM_SAMPLE_PROBABILITY) {

get_random(dims, lower, upper, points[i]->x);

} else {
// Else get a guess from random forest model

// Fit forest
RandomForest forest;
randomforest_fit(&forest, NUMBER_OF_TREES, points, dims, i);

optimize_forest(&forest, lower, upper, points[i]->x, dims, best_val, workspace_points);
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What is this optimize forest part? Is it the acquisition function optimization?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes!

Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It'd be better to have a more standard BO naming here. Can we simply call it acquisition function or similar?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Renamed optimize_forest() -> optimize_acquisition_function()


randomforest_free(&forest);
}

const double y = f(points[i]->x);
points[i]->y = y;

if (y < best_val) {
best_val = y;
for (size_t j=0; j<dims; ++j) { x[j] = points[i]->x[j]; }
}
}

free(workspace_points);
free(workspace);
free(points);
free(data);

return best_val;
}

#endif
9 changes: 9 additions & 0 deletions c_src/datapoint.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
#ifndef DATASET_H
#define DATASET_H

typedef struct DataPoint {
double y;
double x[];
} DataPoint;

#endif
121 changes: 121 additions & 0 deletions c_src/random.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
#ifndef RANDOM_H
#define RANDOM_H

#include <stdint.h>
#include <stdbool.h>
#include <math.h>

/***
* This file contains an implementation of the SplitMix generator,
* and the xoshiro256** generator.
* They are adapted from:
* https://prng.di.unimi.it/splitmix64.c and
* https://prng.di.unimi.it/xoshiro256starstar.c
* respectively.
*/

/**
* Returns a double-precision floating-point number in the range [0, 1),
* using bit manipulation on the given 64-bit integer.
*/
static inline double u64_to_f64(const uint64_t x) {
union {
uint64_t u64;
double f64;
} u = { .u64 = 0x3ff0000000000000ull | (x >> 12) };
return 2.0 - u.f64;
}


typedef uint64_t Splitmix;

static inline void splitmix_init(Splitmix* state, const uint64_t seed) {
*state = seed;
}

uint64_t splitmix_u64(Splitmix* state) {
uint64_t z = (*state += 0x9e3779b97f4a7c15);
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9;
z = (z ^ (z >> 27)) * 0x94d049bb133111eb;
return z ^ (z >> 31);
}

static inline double splitmix_f64(Splitmix* state) {
return u64_to_f64(splitmix_u64(state));
}

typedef struct Xoshiro256 {
uint64_t s[4];
} Xoshiro256;

void xoshiro256_init(Xoshiro256* state, const uint64_t seed) {
Splitmix sm;
splitmix_init(&sm, seed);

state->s[0] = splitmix_u64(&sm);
state->s[1] = splitmix_u64(&sm);
state->s[2] = splitmix_u64(&sm);
state->s[3] = splitmix_u64(&sm);
}

static inline uint64_t rotl64(const uint64_t x, int k) {
return (x << k) | (x >> (64 - k));
}

uint64_t xoshiro256_u64(Xoshiro256* state) {
const uint64_t result = rotl64(state->s[1] * 5, 7) * 9;

const uint64_t t = state->s[1] << 17;

state->s[2] ^= state->s[0];
state->s[3] ^= state->s[1];
state->s[1] ^= state->s[2];
state->s[0] ^= state->s[3];

state->s[2] ^= t;

state->s[3] = rotl64(state->s[3], 45);

return result;
}

static inline double xoshiro256_f64(Xoshiro256* state) {
return u64_to_f64(xoshiro256_u64(state));
}

Xoshiro256 global_xoshiro256_state;

extern inline void random_init(const uint64_t seed) {
xoshiro256_init(&global_xoshiro256_state, seed);
}

static inline uint64_t random_u64(void) {
return xoshiro256_u64(&global_xoshiro256_state);
}

static inline double random_f64(void) {
return xoshiro256_f64(&global_xoshiro256_state);
}

double random_normal(void) {
double v, u, q;
do {
u = random_f64();
v = 1.7156*(random_f64() - 0.5);
const double x = u - 0.449871;
const double y = fabs(v) + 0.386595;
q = x*x + y*(0.19600*y-0.25472*x);
} while (q > 0.27597 && (q > 0.27846 || v*v > -4.0*log(u)*u*u));
return v / u;
}

double random_cauchy(void) {
double v1, v2;
do {
v1 = 2.0 * random_f64() - 1.0;
v2 = random_f64();
} while (v1*v1+v2*v2 >= 1.0 || v2 < 0x1p-63);
return v1 / v2;
}

#endif
Loading