-
Notifications
You must be signed in to change notification settings - Fork 30
Add C backend for bayesian optimization #47
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Changes from 1 commit
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,208 @@ | ||
| #ifndef BAYESIAN_H | ||
| #define BAYESIAN_H | ||
|
|
||
| #include <stdlib.h> | ||
| #include <math.h> | ||
| #include <time.h> | ||
|
|
||
| #include "random.h" | ||
| #include "random_forest.h" | ||
| #include "datapoint.h" | ||
|
|
||
| #define RANDOM_SAMPLE_PROBABILITY 0.05 | ||
| #define NUMBER_OF_TREES 10 | ||
| #define EVO_POPULATION 50 | ||
| #define MUTATE_PROB 0.1 | ||
|
|
||
| typedef double (*OptFunc)(const double*); | ||
|
|
||
| void get_random(const size_t n, const double* lower, const double* upper, double* x) { | ||
| for (size_t i=0; i<n; ++i) { | ||
| x[i] = lower[i] + (upper[i] - lower[i]) * random_f64(); | ||
| } | ||
| } | ||
|
|
||
| static inline double pdf(const double x) { | ||
| return exp(-x*x/2.0) / sqrt(2.0 * M_PI); | ||
| } | ||
|
|
||
| static inline double cdf(const double x) { | ||
| return 0.5 * (1.0 + erf(x / M_SQRT2)); | ||
| } | ||
|
|
||
| static inline double ei(const double y, const double sdev, const double fmin) { | ||
| const double delta = fmin - y; | ||
| const double z = delta / sdev; | ||
| return delta + sdev * pdf(z) + delta * cdf(z); | ||
| } | ||
|
|
||
| void optimize_forest(RandomForest* forest, const double* lower, const double* upper, | ||
| double* out, const size_t dims, const double fmin, DataPoint** points) { | ||
|
|
||
| // This will be our workhorse x | ||
| DataPoint* p = points[EVO_POPULATION]; | ||
|
|
||
| double best = -INFINITY; | ||
|
|
||
| // Initialize the workspace with random points. | ||
| for (size_t i=0; i<EVO_POPULATION; ++i) { | ||
| get_random(dims, lower, upper, points[i]->x); | ||
| double variance; | ||
| double y = randomforest_full_predict(forest, points[i]->x, &variance); | ||
| points[i]->y = ei(y, sqrt(variance), fmin); | ||
|
|
||
| if (points[i]->y > best) { | ||
| best = points[i]->y; | ||
| for (size_t j=0; j<dims; ++j) { out[j] = points[i]->x[j]; } | ||
| } | ||
| } | ||
|
|
||
| size_t oldest = 0; | ||
| for (size_t i=0; i<10000; ++i) { | ||
|
|
||
| DataPoint* p1 = points[0]; | ||
| DataPoint* p2 = points[1]; | ||
| if (p2->y > p1->y) { | ||
| DataPoint* temp = p1; | ||
| p1 = p2; | ||
| p2 = temp; | ||
| } | ||
|
|
||
| for (size_t j=2; j<EVO_POPULATION; ++j) { | ||
| if (points[j]->y > p1->y) { | ||
| p2 = p1; | ||
| p1 = points[j]; | ||
| } else if (points[j]->y > p2->y) { | ||
| p2 = points[j]; | ||
| } | ||
| } | ||
|
|
||
| const double sum = p1->y + p2->y; | ||
| const double p1_prob = p1->y / sum; | ||
|
|
||
| for (size_t j=0; j<dims; ++j) { | ||
| p->x[j] = (random_f64() < p1_prob) ? p1->x[j] : p2->x[j]; | ||
| } | ||
|
|
||
| for (size_t j=0; j<dims; ++j) { | ||
| if (random_f64() < MUTATE_PROB) { | ||
| p->x[j] = lower[j] + (upper[j] - lower[j]) * random_f64(); | ||
| } | ||
| } | ||
|
|
||
| double variance; | ||
| double y = randomforest_full_predict(forest, p->x, &variance); | ||
| p->y = ei(y, sqrt(variance), fmin); | ||
|
|
||
| if (p->y > best) { | ||
| best = p->y; | ||
| for (size_t j=0; j<dims; ++j) { out[j] = p->x[j]; } | ||
| } | ||
|
|
||
| DataPoint* temp = points[oldest]; | ||
| points[oldest] = p; | ||
| p = temp; | ||
|
|
||
| oldest = (oldest + 1) % EVO_POPULATION; | ||
|
|
||
| } | ||
|
|
||
| // Make sure to update the backing pointer array, since p may have been swapped | ||
| points[EVO_POPULATION] = p; | ||
| } | ||
|
|
||
| void shuffle_points(DataPoint** points, const size_t n) { | ||
| for (size_t i=0; i<n-1; ++i) { | ||
| const size_t j = i + random_u64() % (n-i); | ||
| DataPoint* temp = points[i]; | ||
| points[i] = points[j]; | ||
| points[j] = temp; | ||
| } | ||
| } | ||
|
|
||
| double bayesian_optimization(OptFunc f, const double* lower, const double* upper, double* x, const size_t dims, | ||
| const size_t doe, const size_t iter) { | ||
|
|
||
| const size_t dp_size = sizeof(DataPoint) + dims * sizeof(double); | ||
|
|
||
| // Alloc backing data for all points (1 per iteration) | ||
| DataPoint* data = calloc(iter, dp_size); | ||
|
|
||
| // Alloc pointers that can point into backing data points | ||
| DataPoint** points = calloc(iter, sizeof(DataPoint*)); | ||
|
|
||
| // Assign each pointer to an allocated data point | ||
| points[0] = data; | ||
| for (size_t i=1; i<iter; ++i) { points[i] = (void*)points[i-1] + dp_size; } | ||
|
|
||
| // Alloc work space for local search algorithm | ||
| DataPoint* workspace = calloc(EVO_POPULATION + 1, dp_size); | ||
|
|
||
| // Pointers into workspace | ||
| DataPoint** workspace_points = calloc(EVO_POPULATION + 1, sizeof(DataPoint*)); | ||
|
|
||
| workspace_points[0] = workspace; | ||
| for (size_t i=1; i<EVO_POPULATION+1; ++i) { | ||
| workspace_points[i] = (void*)workspace_points[i-1] + dp_size; | ||
| } | ||
|
|
||
| // This will correspond to the point in the parameter x | ||
| double best_val = INFINITY; | ||
|
|
||
| // Initialize DoE phase as a latin hypercube | ||
| for (size_t i=0; i<dims; ++i) { | ||
| for (size_t j=0; j<doe; ++j) { | ||
| points[j]->x[i] = lower[i] + (upper[i] - lower[i]) * (j + random_f64()) / doe; | ||
| } | ||
| shuffle_points(points, doe); | ||
| } | ||
|
|
||
| // Evaluate DoE points | ||
| for (size_t i=0; i<doe; ++i) { | ||
| const double y = f(points[i]->x); | ||
| points[i]->y = y; | ||
|
|
||
| if (y < best_val) { | ||
| best_val = y; | ||
| for (size_t j=0; j<dims; ++j) { x[j] = points[i]->x[j]; } | ||
| } | ||
| } | ||
|
|
||
| double mean_iter = 0.0; | ||
|
|
||
| for (size_t i=doe; i<iter; ++i) { | ||
|
|
||
| if (random_f64() < RANDOM_SAMPLE_PROBABILITY) { | ||
|
|
||
| get_random(dims, lower, upper, points[i]->x); | ||
|
|
||
| } else { | ||
| // Else get a guess from random forest model | ||
|
|
||
| // Fit forest | ||
| RandomForest forest; | ||
| randomforest_fit(&forest, NUMBER_OF_TREES, points, dims, i); | ||
|
|
||
| optimize_forest(&forest, lower, upper, points[i]->x, dims, best_val, workspace_points); | ||
|
||
|
|
||
| randomforest_free(&forest); | ||
| } | ||
|
|
||
| const double y = f(points[i]->x); | ||
| points[i]->y = y; | ||
|
|
||
| if (y < best_val) { | ||
| best_val = y; | ||
| for (size_t j=0; j<dims; ++j) { x[j] = points[i]->x[j]; } | ||
| } | ||
| } | ||
|
|
||
| free(workspace_points); | ||
| free(workspace); | ||
| free(points); | ||
| free(data); | ||
|
|
||
| return best_val; | ||
| } | ||
|
|
||
| #endif | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,9 @@ | ||
| #ifndef DATASET_H | ||
| #define DATASET_H | ||
|
|
||
| typedef struct DataPoint { | ||
| double y; | ||
| double x[]; | ||
| } DataPoint; | ||
|
|
||
| #endif |
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,121 @@ | ||
| #ifndef RANDOM_H | ||
| #define RANDOM_H | ||
|
|
||
| #include <stdint.h> | ||
| #include <stdbool.h> | ||
| #include <math.h> | ||
|
|
||
| /*** | ||
| * This file contains an implementation of the SplitMix generator, | ||
| * and the xoshiro256** generator. | ||
| * They are adapted from: | ||
| * https://prng.di.unimi.it/splitmix64.c and | ||
| * https://prng.di.unimi.it/xoshiro256starstar.c | ||
| * respectively. | ||
| */ | ||
|
|
||
| /** | ||
| * Returns a double-precision floating-point number in the range [0, 1), | ||
| * using bit manipulation on the given 64-bit integer. | ||
| */ | ||
| static inline double u64_to_f64(const uint64_t x) { | ||
| union { | ||
| uint64_t u64; | ||
| double f64; | ||
| } u = { .u64 = 0x3ff0000000000000ull | (x >> 12) }; | ||
| return 2.0 - u.f64; | ||
| } | ||
|
|
||
|
|
||
| typedef uint64_t Splitmix; | ||
|
|
||
| static inline void splitmix_init(Splitmix* state, const uint64_t seed) { | ||
| *state = seed; | ||
| } | ||
|
|
||
| uint64_t splitmix_u64(Splitmix* state) { | ||
| uint64_t z = (*state += 0x9e3779b97f4a7c15); | ||
| z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9; | ||
| z = (z ^ (z >> 27)) * 0x94d049bb133111eb; | ||
| return z ^ (z >> 31); | ||
| } | ||
|
|
||
| static inline double splitmix_f64(Splitmix* state) { | ||
| return u64_to_f64(splitmix_u64(state)); | ||
| } | ||
|
|
||
| typedef struct Xoshiro256 { | ||
| uint64_t s[4]; | ||
| } Xoshiro256; | ||
|
|
||
| void xoshiro256_init(Xoshiro256* state, const uint64_t seed) { | ||
| Splitmix sm; | ||
| splitmix_init(&sm, seed); | ||
|
|
||
| state->s[0] = splitmix_u64(&sm); | ||
| state->s[1] = splitmix_u64(&sm); | ||
| state->s[2] = splitmix_u64(&sm); | ||
| state->s[3] = splitmix_u64(&sm); | ||
| } | ||
|
|
||
| static inline uint64_t rotl64(const uint64_t x, int k) { | ||
| return (x << k) | (x >> (64 - k)); | ||
| } | ||
|
|
||
| uint64_t xoshiro256_u64(Xoshiro256* state) { | ||
| const uint64_t result = rotl64(state->s[1] * 5, 7) * 9; | ||
|
|
||
| const uint64_t t = state->s[1] << 17; | ||
|
|
||
| state->s[2] ^= state->s[0]; | ||
| state->s[3] ^= state->s[1]; | ||
| state->s[1] ^= state->s[2]; | ||
| state->s[0] ^= state->s[3]; | ||
|
|
||
| state->s[2] ^= t; | ||
|
|
||
| state->s[3] = rotl64(state->s[3], 45); | ||
|
|
||
| return result; | ||
| } | ||
|
|
||
| static inline double xoshiro256_f64(Xoshiro256* state) { | ||
| return u64_to_f64(xoshiro256_u64(state)); | ||
| } | ||
|
|
||
| Xoshiro256 global_xoshiro256_state; | ||
|
|
||
| extern inline void random_init(const uint64_t seed) { | ||
| xoshiro256_init(&global_xoshiro256_state, seed); | ||
| } | ||
|
|
||
| static inline uint64_t random_u64(void) { | ||
| return xoshiro256_u64(&global_xoshiro256_state); | ||
| } | ||
|
|
||
| static inline double random_f64(void) { | ||
| return xoshiro256_f64(&global_xoshiro256_state); | ||
| } | ||
|
|
||
| double random_normal(void) { | ||
| double v, u, q; | ||
| do { | ||
| u = random_f64(); | ||
| v = 1.7156*(random_f64() - 0.5); | ||
| const double x = u - 0.449871; | ||
| const double y = fabs(v) + 0.386595; | ||
| q = x*x + y*(0.19600*y-0.25472*x); | ||
| } while (q > 0.27597 && (q > 0.27846 || v*v > -4.0*log(u)*u*u)); | ||
| return v / u; | ||
| } | ||
|
|
||
| double random_cauchy(void) { | ||
| double v1, v2; | ||
| do { | ||
| v1 = 2.0 * random_f64() - 1.0; | ||
| v2 = random_f64(); | ||
| } while (v1*v1+v2*v2 >= 1.0 || v2 < 0x1p-63); | ||
| return v1 / v2; | ||
| } | ||
|
|
||
| #endif |
Uh oh!
There was an error while loading. Please reload this page.