An open, end‑to‑end AI career development platform: modern React frontend + FastAPI backend with multi‑agent orchestration (Career Analyst, Mentor Bot, Skills Assessor, Learning Orchestrator, Opportunity Scout, Progress Monitor). Uses Google Gemini via an LLM layer to run assessments (Big Five, RIASEC), generate recommendations, and power interactive counseling and analytics.
Quick Start • Features • Architecture • Configuration • API • Roadmap • Contributing
- Assessments: Big Five personality, RIASEC interests, skills gap analysis
- Career Matching: Fit scoring, reasoning, and recommended actions
- Mentor Chat: Sentiment‑aware, context memory, actionable next steps
- Analytics: Career trends, skill demand predictions, disruption insights
- Progress Tracking: Goals, milestones, achievements
- Full Monorepo: React + TS + Vite frontend, FastAPI backend, data models & agents
┌─────────────────────────────────────────────────────────────────────────────┐
│ AI CAREER ADVISOR SYSTEM │
│ │
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │
│ │ React Frontend │ │ FastAPI Backend │ │ Google Gemini │ │
│ │ (Port 3000) │◄──►│ (Port 8001) │◄──►│ AI Model │ │
│ │ • Dashboard │ │ • REST APIs │ │ • LLM Calls │ │
│ │ • Chat UI │ │ • Agent Router │ │ • Analysis │ │
│ │ • Analytics │ │ • Database │ │ • Counseling │ │
│ │ • Profiles │ │ • Auth │ │ │ │
│ └─────────────────┘ └─────────────────┘ └─────────────────┘ │
└─────────────────────────────────────────────────────────────────────────────┘
Agents
- CareerAnalyst • MentorBot • SkillsAssessor • LearningOrchestrator • OpportunityScout • ProgressMonitor
Tech Stack
- Frontend: React 19 + TypeScript + Vite, React Router, Recharts
- Backend: FastAPI, LangChain‑based agent framework, SQLite (async)
- LLM: Google Gemini (configurable)
manaspros-aicareer/
├─ career-advisor-frontend/ # React + TS + Vite app
│ └─ src/components/... # Dashboard, Chat, Analytics, Profile, etc.
├─ career_advisor_agents/ # FastAPI service + agents
│ ├─ api/ # routes, main
│ ├─ agents/ # career_analyst.py, mentor_bot.py, ...
│ ├─ core/ # agent_framework.py, llm_config.py
│ ├─ services/ # counseling, predictive_analytics, db
│ ├─ data/ # skills_taxonomy.json, industry_trends.json
│ ├─ run_server.py # entrypoint
│ └─ requirements.txt / pyproject.toml
├─ SYSTEM_WORKFLOW.md # end‑to‑end flow & endpoints
└─ CLAUDE.md # prompts/settings (placeholder)
- Node.js 18+ and npm
- Python 3.11+
cd career_advisor_agents
python -m venv .venv && source .venv/bin/activate # Windows: .venv\Scripts\activate
pip install -r requirements.txt
cp .env.example .env
# Edit .env with your keys (see Configuration below)
python run_server.py # serves on http://localhost:8001cd career-advisor-frontend
npm install
# set VITE_API_BASE_URL in a .env file if different from default
npm run dev # http://localhost:3000Visit http://localhost:3000. The app performs a health check and can auto‑create a demo user. Use the Dashboard to explore Profile, Chat, Career Analysis, and Analytics.
GEMINI_API_KEY=your_key_here
DATABASE_URL=sqlite+aiosqlite:///career.db
CORS_ALLOWED_ORIGINS=http://localhost:3000
PORT=8001
VITE_API_BASE_URL=http://localhost:8001
Tip: secure secrets via your preferred secret manager in production.
Health & System
GET /health— system healthGET /api/system/agents— list available agentsGET /api/system/metrics— performance metrics
Users
POST /api/users/register— register new userGET /api/users/{user_id}/profile•PUT /api/users/{user_id}/profile
Agents
POST /api/agents/career-analysis— run assessments & matchingPOST /api/agents/counseling/chat— mentor chatGET /api/agents/recommendations/{user_id}— personalized recs
Analytics
GET /api/analytics/career-trendsGET /api/analytics/skill-demandGET /api/analytics/market-predictions
Conversations
GET /api/conversations/{user_id}
users(profile, education level, career stage)conversations(messages, agent, context, confidence)personality_assessments(OCEAN traits)interest_assessments(RIASEC)career_recommendations(title, score, actions)progress_updates(skills, goals, milestones)
- Data encryption at rest, rate limiting, privacy controls, audit logging
- Conversation memory with explicit user controls
Working: Frontend UI, FastAPI endpoints, DB layer (SQLite async), agent framework, Gemini config
Known Issues
- Some agents still return hardcoded responses
- Enum validation edge cases in DB
- LLM errors fallback to dummy responses
- Agent routing fixes to consistently use AI
- Stronger error handling & logging
- Enhanced prompt engineering
- Proper scoring algorithms for assessments
- Real‑time market data integration
- Fork & create a feature branch
- Follow TypeScript/Python linters
- Open a PR with a clear description & screenshots where relevant
TBD. Add a LICENSE file (MIT/Apache‑2.0 recommended) and update the badge.
- React, Vite, FastAPI, LangChain, Google Gemini, Recharts
Built for learners, job seekers, and career switchers who want actionable, AI‑assisted guidance end‑to‑end.