Skip to content

Production-ready Claude Code plugin for category theory-based meta-prompting (v2.4.0) with 6 categorical structures, 4 composition operators, error handling, and quality visualization

License

Notifications You must be signed in to change notification settings

manutej/categorical-meta-prompting-plugin

Repository files navigation

Categorical Meta-Prompting Framework

Category theory-based prompt engineering with mathematical rigor and practical power

Version License Claude Code

A production-ready Claude Code plugin implementing categorical structures (functors, monads, comonads, natural transformations) for rigorous, composable prompt engineering with quality visualization and error handling.


Features

6 Categorical Structures

  • F (Functor): Task → Prompt transformation
  • M (Monad): Iterative refinement with quality convergence
  • W (Comonad): Context extraction and meta-observation
  • α (Natural Transformation): Strategy switching between functors
  • E (Exception Monad): Error handling with monad semantics
  • [0,1]-Enriched: Quality tracking and visualization

4 Composition Operators

  • Sequential (Kleisli composition)
  • || Parallel (concurrent execution)
  • Tensor (quality-degrading combination)
  • >=> Kleisli refinement (monadic with quality gates)

Advanced Features

  • Quality flow visualization (Phase 5)
  • Error handling and recovery (Phase 3)
  • Multi-dimensional quality assessment
  • Categorical law verification
  • Progressive disclosure (Layer 1-3)

Quick Start

Installation

git clone https://github.com/categorical-meta-prompting/plugin.git
cd plugin
./INSTALL.sh

Restart Claude Code to activate the plugin.

First Command

# Simple meta-prompting
/meta "implement rate limiter"

# Quality-gated iteration
/rmp @quality:0.85 "optimize algorithm"

# Command composition
/chain [/meta→/review] "build feature"

Categorical Coverage

Structure Symbol Command Description
Functor F /meta Task → Prompt (structure-preserving)
Monad M /rmp Prompt →^n Prompt (iterative refinement)
Comonad W /context History → Context (extraction)
Nat. Trans. α /transform F ⇒ G (strategy switching)
Exception E @catch:, @fallback: Error handling
Enriched [0,1] @quality:, @quality:visualize Quality tracking

Contents

Skills (1 total)

  • meta-self: Master reference for unified categorical syntax. Contains all modifiers, operators, composition patterns, and execution protocols.

Commands (5 total)

Command Description Key Syntax
/meta Categorical meta-prompting @mode:, @tier:, @template:
/rmp Recursive meta-prompting loop @quality:, @max_iterations:
/chain Command composition [/cmd1→/cmd2→/cmd3]
/context Comonad operations @mode:, @focus:, @depth:
/transform Natural transformations @from:, @to:, @verify:

Core Concepts

1. Functor F: Task → Prompt

Transform tasks to prompts while preserving structure.

/meta "implement authentication"

# With explicit tier
/meta @tier:L5 "design microservices architecture"

# With template components
/meta @template:{context:expert}+{mode:cot}+{format:code} "build API"

Categorical Laws:

  • F(id) = id (Identity)
  • F(g ∘ f) = F(g) ∘ F(f) (Composition)

2. Monad M: Iterative Refinement

Refine prompts until quality threshold met.

/rmp @quality:0.85 "optimize database query"

# With iteration limit
/rmp @quality:0.9 @max_iterations:3 "build robust system"

Categorical Laws:

  • return >=> f = f (Left Identity)
  • f >=> return = f (Right Identity)
  • (f >=> g) >=> h = f >=> (g >=> h) (Associativity)

3. Comonad W: Context Extraction

Extract context from execution history.

# Extract recent context
/context @mode:extract @focus:recent @depth:5 "summarize progress"

# Create meta-observation
/context @mode:duplicate "why did this approach fail?"

# Context-aware transformation
/context @mode:extend @transform:summarize "create summary"

Categorical Laws:

  • extract ∘ duplicate = id (Left Identity)
  • duplicate ∘ duplicate = fmap duplicate ∘ duplicate (Associativity)

4. Natural Transformation α: Strategy Switching

Switch between prompting strategies.

# Transform to chain-of-thought
/transform @from:zero-shot @to:chain-of-thought "explain algorithm"

# Compare strategies
/transform @mode:compare @from:few-shot @to:chain-of-thought "task"

# Analyze optimal strategy
/transform @mode:analyze "complex reasoning problem"

Categorical Law:

  • α_B ∘ F(f) = G(f) ∘ α_A (Naturality condition)

5. Exception Monad E: Error Handling

Handle errors with monad semantics.

# Retry on failure
/chain @catch:retry:3 [/api-call→/process] "fetch data"

# Skip failed stages
/chain @catch:skip [/cache→/compute→/save] "expensive query"

# Fallback to alternative
/chain [/primary@catch:substitute:/backup→/process] "critical task"

# Best-effort with fallback
/rmp @fallback:return-best @quality:0.9 "complex analysis"

Error Handling Laws:

  • catch(Right(a), h) = Right(a) (Catch Identity)
  • catch(Left(e), h) = h(e) (Catch Error)

6. [0,1]-Enriched: Quality Visualization

Track and visualize quality flow.

# Basic visualization
/chain @quality:visualize [/analyze→/design→/implement] "build feature"

# Flow diagram
/chain @quality:visualize:flow [/research→/prototype→/refine] "feature"

# Detailed breakdown
/chain @quality:visualize:detailed [/cmd1→/cmd2→/cmd3] "complex task"

Categorical Foundation:

  • Hom_Q(A, B) = [0,1] (Enriched hom-sets)
  • q1 ⊗ q2 = min(q1, q2) (Quality tensor product)

Composition Operators

→ (Sequential)

Output of A becomes input of B.

/chain [/debug→/review→/test] "error in auth.py"

Quality: quality(A → B) ≤ min(quality(A), quality(B))

|| (Parallel)

Execute concurrently, aggregate results.

/chain [/review-security || /review-performance] "audit code"

Quality: quality(A || B) = mean(quality(A), quality(B))

⊗ (Tensor)

Combine capabilities, quality degrades to minimum.

@skills:compose(api-testing⊗validation) "create tests"

Quality: quality(A ⊗ B) = min(quality(A), quality(B))

>=> (Kleisli)

Monadic refinement with quality gates.

/rmp @quality:0.85 [analyze>=>design>=>implement] "build feature"

Quality: Improves iteratively until threshold


Modifier Reference

Execution Modes

Modifier Values Default Description
@mode: active, iterative, dry-run, spec active Execution mode
# Preview execution plan
/meta @mode:dry-run "complex task"

# Generate YAML specification
/meta @mode:spec "task"

Quality Control

Modifier Values Default Description
@quality: 0.0-1.0 0.8 Quality threshold
@max_iterations: integer 5 Max RMP iterations
/rmp @quality:0.9 @max_iterations:3 "optimize code"

Complexity Tiers

Modifier Values Default Description
@tier: L1-L7 auto Complexity classification
Tier Tokens Pattern Strategy
L1 600-1200 Single op DIRECT
L2 1500-3000 A → B DIRECT
L3 2500-4500 A → B → C MULTI_APPROACH
L4 3000-6000 A || B || C MULTI_APPROACH
L5 5500-9000 Hierarchical AUTONOMOUS_EVOLUTION
L6 8000-12000 Iterative AUTONOMOUS_EVOLUTION
L7 12000-22000 Ensemble AUTONOMOUS_EVOLUTION

Error Handling (Phase 3)

Modifier Values Default Description
@catch: halt, log, retry:N, skip, substitute:/cmd halt Error behavior
@fallback: return-best, return-last, use-default:[val], empty - Recovery strategy
# Retry 3 times on failure
/chain @catch:retry:3 [/api→/process] "fetch data"

# Return best result if error
/rmp @fallback:return-best @quality:0.9 "task"

Quality Visualization (Phase 5)

Modifier Values Default Description
@quality:visualize bar, flow, detailed, compact bar Visualization format
# Bar chart (default)
/chain @quality:visualize [/A→/B→/C] "task"

# Flow diagram
/chain @quality:visualize:flow [/A→/B→/C] "task"

# Detailed breakdown
/chain @quality:visualize:detailed [/A→/B→/C] "task"

# Compact summary
/chain @quality:visualize:compact [/A→/B→/C] "task"

Budget & Variance

Modifier Values Default Description
@budget: integer, [array], auto auto Token budget
@variance: percentage 20% Acceptable variance
/chain @budget:20000 @variance:15% [/research→/design] "feature"

Template Components

Modifier Values Default Description
@template: {context}+{mode}+{format} auto Template assembly

Components:

  • {context:expert\|teacher\|reviewer\|debugger}
  • {mode:direct\|cot\|multi\|iterative}
  • {format:prose\|structured\|code\|checklist}
/meta @template:{context:expert}+{mode:cot}+{format:code} "implement feature"

Usage Examples

Example 1: Simple Task

/meta "implement rate limiter"

What happens:

  • Auto-detects domain, tier, template
  • Executes single-pass
  • Returns result

Example 2: Quality-Gated Iteration

/rmp @quality:0.85 @max_iterations:5 "optimize algorithm"

What happens:

  1. Generate initial solution
  2. Assess quality (4 dimensions)
  3. If quality < 0.85: refine and repeat
  4. Stop when quality ≥ 0.85 or 5 iterations
  5. Return best result

Example 3: Command Composition

/chain [/analyze→/design→/implement→/test] "build authentication"

What happens:

  1. /analyze receives task, produces analysis
  2. /design receives analysis, produces design
  3. /implement receives design, produces code
  4. /test receives code, produces test results
  5. Return final result

Example 4: Parallel Execution

/chain [/review-security || /review-performance || /review-style] "audit api.py"

What happens:

  • All three reviews execute concurrently
  • Results aggregated/compared
  • Return combined assessment

Example 5: Error Handling

/chain @catch:retry:3 [/fetch-data→/process→/save] "user data"

What happens:

  1. /fetch-data tries, if fails → retry up to 3 times
  2. If all retries fail → chain halts with error
  3. If any retry succeeds → continue to /process
  4. /process and /save execute normally

Example 6: Quality Visualization

/chain @quality:visualize [/analyze→/design→/implement] "build feature"

Output includes:

┌────────────────────────────────────────────────────────────┐
│  QUALITY FLOW VISUALIZATION                                │
├────────────────────────────────────────────────────────────┤
│                                                             │
│  /analyze     0.75  ███████████████░░░░░░░  75%           │
│                ↓                                            │
│  /design      0.82  ████████████████░░░░░░  82%  (+7%)    │
│                ↓                                            │
│  /implement   0.68  █████████████░░░░░░░░░  68%  (-14%)   │
│                                                             │
│  Final Quality: 0.68  (Acceptable)                         │
└────────────────────────────────────────────────────────────┘

Example 7: Full Unified Syntax

/meta @mode:iterative @tier:L5 @quality:0.9 @template:{context:expert}+{mode:cot}+{format:code} "build production auth system"

What happens:

  • Mode: iterative (enable RMP loop)
  • Tier: L5 (hierarchical complexity)
  • Quality: 0.9 (high threshold)
  • Template: expert context + chain-of-thought + code format
  • Iterate until quality ≥ 0.9

Quality Assessment

Multi-Dimensional Quality Vector

Dimension Weight Question
Correctness 40% Does it solve the problem correctly?
Clarity 25% Is it clear and understandable?
Completeness 20% Are edge cases and requirements covered?
Efficiency 15% Is the solution well-designed?

Aggregate Formula

aggregate = 0.40 × correctness + 0.25 × clarity + 0.20 × completeness + 0.15 × efficiency

Quality Thresholds

Score Status Action
≥0.9 Excellent Stop, success
0.8-0.9 Good Stop, success
0.7-0.8 Acceptable Continue if iterative
0.6-0.7 Poor Refine if iterations remain
<0.6 Failed Abort or restructure

Categorical Laws

The framework rigorously enforces 11 categorical laws:

  1. Functor Identity: F(id) = id
  2. Functor Composition: F(g ∘ f) = F(g) ∘ F(f)
  3. Monad Left Identity: return >=> f = f
  4. Monad Right Identity: f >=> return = f
  5. Monad Associativity: (f >=> g) >=> h = f >=> (g >=> h)
  6. Comonad Left Identity: extract ∘ duplicate = id
  7. Comonad Associativity: duplicate ∘ duplicate = fmap duplicate ∘ duplicate
  8. Naturality Condition: α_B ∘ F(f) = G(f) ∘ α_A
  9. Exception Catch Identity: catch(Right(a), h) = Right(a)
  10. Exception Catch Error: catch(Left(e), h) = h(e)
  11. Quality Monotonicity: quality(A ⊗ B) ≤ min(quality(A), quality(B))

Checkpoint Format

All commands produce standardized checkpoints:

CHECKPOINT_[type]_[n]:
  command: /[command]
  iteration: [n]
  quality:
    correctness: [0-1]
    clarity: [0-1]
    completeness: [0-1]
    efficiency: [0-1]
    aggregate: [0-1]
  quality_delta: [+/- from previous]
  budget:
    used: [tokens]
    remaining: [tokens]
    variance: [%]
  status: [CONTINUE | CONVERGED | MAX_ITERATIONS | HALT]

Requirements

  • Claude Code: v1.0 or higher
  • MCP Servers: None (self-contained)
  • Platform: macOS, Linux
  • Shell: Bash 4.0+

Installation

Quick Install

git clone https://github.com/categorical-meta-prompting/plugin.git
cd plugin
./INSTALL.sh

Manual Install

# Copy commands
cp commands/*.md ~/.claude/commands/

# Copy skills
cp -r skills/meta-self ~/.claude/skills/

# Restart Claude Code

Uninstallation

Remove installed files:

# Remove commands
rm ~/.claude/commands/chain.md
rm ~/.claude/commands/meta.md
rm ~/.claude/commands/rmp.md
rm ~/.claude/commands/context.md
rm ~/.claude/commands/transform.md

# Remove skills
rm -rf ~/.claude/skills/meta-self

# Restart Claude Code

Documentation

Quick Reference

  • Unified Syntax: ~/.claude/skills/meta-self/SKILL.md
  • Quick Start: docs/QUICK-START.md
  • Examples: docs/EXAMPLES.md
  • Changelog: docs/CHANGELOG.md

Command Help

# Preview execution plan
/meta @mode:dry-run "your task"

# Generate specification
/meta @mode:spec "your task"

# Read skill reference
cat ~/.claude/skills/meta-self/SKILL.md

Troubleshooting

"Quality not improving"

# Check quality trend in checkpoints
# If PLATEAU: Fixed-point reached, accept result
# If DEGRADING: Restructure approach

"Budget exceeded"

# Reduce tier or adjust budget
/meta @tier:L4 @budget:15000 "simpler approach"

"Unknown modifier"

# Consult meta-self skill for valid modifiers
cat ~/.claude/skills/meta-self/SKILL.md

Contributing

Contributions welcome! Please follow these guidelines:

  1. Categorical Rigor: All changes must preserve categorical laws
  2. Unified Syntax: Follow modifier naming conventions
  3. Quality Standards: Maintain quality ≥ 0.85
  4. Documentation: Update README and SKILL.md

License

MIT License - see LICENSE for details


Credits

Categorical Meta-Prompting Team

Inspired by:

  • Gavranović et al. (ICML 2024): Categorical Deep Learning
  • de Wynter et al. (2025): Category Theory for Meta-Prompting
  • Bradley (2021): Enriched Category Theory of Language

Support


Version: 2.4.0 Status: Production Ready Foundation: Category Theory (F, M, W, α, E, [0,1]-enriched) Compatibility: 100% backward compatible

About

Production-ready Claude Code plugin for category theory-based meta-prompting (v2.4.0) with 6 categorical structures, 4 composition operators, error handling, and quality visualization

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages