Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
# %% Imports
from pathlib import Path
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report
from typing import Mapping
from numpy.typing import NDArray
from xarray import DataArray
from viscy.representation.embedding_writer import read_embedding_dataset
from viscy.representation.evaluation.lca import fit_logistic_regression

# %% Constants
TRAIN_FOVS = ["/0/0/0", "/0/1/0", "/0/2/0"]

# Function to load annotations
def load_annotation(da, path, name, categories=None):
annotation = pd.read_csv(path)
annotation["fov_name"] = "/" + annotation["fov ID"]
annotation = annotation.set_index(["fov_name", "id"])
mi = pd.MultiIndex.from_arrays(
[da["fov_name"].values, da["id"].values], names=["fov_name", "id"]
)
selected = annotation.loc[mi][name]
if categories:
selected = selected.astype("category").cat.rename_categories(categories)
return selected

# Model embeddings and annotation paths
model_embeddings = {
"track": Path(
"/hpc/projects/organelle_phenotyping/ALFI_benchmarking/predictions_final/ALFI_opp_cellaware.zarr"
)
}

annotation_path = Path("/hpc/reference/imaging/ALFI_dataset/Analysis/train_annotations.csv")

# %% Processing each model embedding
for model_name, path_embedding in model_embeddings.items():
print(f"Model: {model_name}")
dataset = read_embedding_dataset(path_embedding)
features = dataset["features"]

# Load the division annotations
fineclass_mapping = {
0: "EarlyMitosis",
1: "LateMitosis",
-1: "NoAnnotation"
}

fineclass = load_annotation(
dataset,
annotation_path,
"fineclass",
fineclass_mapping
)

# print("Class distribution for fineclass before splitting:")
# print(fineclass.value_counts())

# Fit logistic regression model
log_reg = fit_logistic_regression(
features,
fineclass,
train_fovs=TRAIN_FOVS,
remove_background_class=True,
scale_features=False,
class_weight="balanced",
solver="liblinear",
random_state=42,
)

# # Load the division annotations
# division = load_annotation(
# dataset,
# annotation_path,
# "division",
# {0: "interphase", 1: "mitosis"}
# )

# # Fit logistic regression model
# log_reg = fit_logistic_regression(
# features,
# division,
# train_fovs=TRAIN_FOVS,
# remove_background_class=False,
# scale_features=False,
# class_weight="balanced",
# solver="liblinear",
# random_state=42,
# )
# %%
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
# %% Imports
from pathlib import Path
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report
from typing import Mapping
from numpy.typing import NDArray
from xarray import DataArray
from viscy.representation.embedding_writer import read_embedding_dataset
from viscy.representation.evaluation.lca import fit_logistic_regression

# %% Constants
TRAIN_FOVS = ["/0/0/0", "/0/1/0", "/0/2/0"]

# Function to load annotations
def load_annotation(da, path, name, categories=None):
annotation = pd.read_csv(path)
annotation["fov_name"] = "/" + annotation["fov ID"]
annotation = annotation.set_index(["fov_name", "id"])
mi = pd.MultiIndex.from_arrays(
[da["fov_name"].values, da["id"].values], names=["fov_name", "id"]
)
selected = annotation.loc[mi][name]
if categories:
selected = selected.astype("category").cat.rename_categories(categories)
return selected

# Model embeddings and annotation paths
model_embeddings = {
"track": Path(
"/hpc/projects/organelle_phenotyping/ALFI_benchmarking/predictions_final/ALFI_opp_cellaware.zarr"
)
}

annotation_path = Path("/hpc/reference/imaging/ALFI_dataset/Analysis/train_annotations.csv")

# %% Processing each model embedding
for model_name, path_embedding in model_embeddings.items():
print(f"Model: {model_name}")
dataset = read_embedding_dataset(path_embedding)
features = dataset["features"]

# Load the division annotations
division = load_annotation(
dataset,
annotation_path,
"division",
{0: "interphase", 1: "mitosis", -1: "NoAnnotation"}
)

# Fit logistic regression model
log_reg = fit_logistic_regression(
features,
division,
train_fovs=TRAIN_FOVS,
remove_background_class=True,
scale_features=False,
class_weight="balanced",
solver="liblinear",
random_state=42,
)

# # Load the division annotations
# fineclass_mapping = {
# 0: "EarlyMitosis",
# 1: "LateMitosis",
# -1: "NoAnnotation"
# }

# fineclass = load_annotation(
# dataset,
# annotation_path,
# "fineclass",
# fineclass_mapping
# )

# # print("Class distribution for fineclass before splitting:")
# # print(fineclass.value_counts())

# # Fit logistic regression model
# log_reg = fit_logistic_regression(
# features,
# fineclass,
# train_fovs=TRAIN_FOVS,
# remove_background_class=False,
# scale_features=False,
# class_weight="balanced",
# solver="liblinear",
# random_state=42,
# )


# %%
Loading