Skip to content

Conversation

@edyoshikun
Copy link
Member

  • Adding support for PHATE
  • Adding reviewed Alishba's scripts for ALFI.

@edyoshikun edyoshikun changed the title Phate PHATE Nov 27, 2024
@Soorya19Pradeep
Copy link
Contributor

@edyoshikun , can we add the calculation and storage of PHATE in the predictions in this PR?

@edyoshikun edyoshikun merged commit 3475223 into ntxent_loss Dec 21, 2024
4 checks passed
@edyoshikun edyoshikun deleted the phate branch December 21, 2024 22:33
edyoshikun added a commit that referenced this pull request Dec 23, 2024
* translation: fix validation loss aggregation (#202)

* exposing prefetch and persistent worker (#203)

* metrics for dynamic, smoothness and docstrings

* updated metrics and plots for distance

* fixed CI test cases

* nexnt loss prototype

* fix bug with z_scale_range in hcs datamodule. If the value is an int this does not work.

* exclude the negative pair from dataloader and forward pass

* adding option using pytorch-metric-learning implementation
and modifying previous to match same input args

* removing our implementation of NTXentLoss and using pytorch metric

* ruff

* prototype for phate and umap plot

* - proofreading the calculations
- removing unecessary calls to ALFI script
- simplifying code to re-use functions

* methods to rank nearest neighbors in embeddings

* example script to plot state change of a single track

* test using scaled features

* phate embeddings

* removing dataframe from the compute_phate
adding docstring

* adding phate to the prediction writer and moving it as dependency.

* changing the phate defaults in the prediction writer.

* ruff

* fixing bug in phate in predict writer

* adding code for measuring the smoothness

* cleanup to run on triplet and ntxent

* fix plots for smoothnes

* nexnt loss prototype

* exclude the negative pair from dataloader and forward pass

* adding option using pytorch-metric-learning implementation
and modifying previous to match same input args

* removing our implementation of NTXentLoss and using pytorch metric

* ruff

* remove blank line diff

* remove blank line diff

* simplying the engine

* explicit target shape argument in the HCS data module

* Revert "explicit target shape argument in the HCS data module"

This reverts commit 464d4c9.

* Explicit target shape argument in the HCS data module (#212)

* explicit target shape argument in the HCS data module

* update docstring

* update test cases

* Gradio example (#158)

* initial demo

* using the predict_step

* modifying paths to chkpt and example pngs

* updating gradio as the one on Huggingface

* adding configurable phate arguments via config

* script to recompute phate and overwrite the previous phate data

* ruff

* solving redundancies

* modularizing the smoothness

* removing redundant _fit_phate()

* ruff

---------

Co-authored-by: Ziwen Liu <[email protected]>
Co-authored-by: Alishba Imran <[email protected]>
Co-authored-by: Ziwen Liu <[email protected]>
mattersoflight pushed a commit that referenced this pull request Dec 23, 2024
* nexnt loss prototype

* fix bug with z_scale_range in hcs datamodule. If the value is an int this does not work.

* exclude the negative pair from dataloader and forward pass

* adding option using pytorch-metric-learning implementation
and modifying previous to match same input args

* removing our implementation of NTXentLoss and using pytorch metric

* ruff

* remove blank line diff

* remove blank line diff

* simplying the engine

* PHATE (#210)

* translation: fix validation loss aggregation (#202)

* exposing prefetch and persistent worker (#203)

* metrics for dynamic, smoothness and docstrings

* updated metrics and plots for distance

* fixed CI test cases

* nexnt loss prototype

* fix bug with z_scale_range in hcs datamodule. If the value is an int this does not work.

* exclude the negative pair from dataloader and forward pass

* adding option using pytorch-metric-learning implementation
and modifying previous to match same input args

* removing our implementation of NTXentLoss and using pytorch metric

* ruff

* prototype for phate and umap plot

* - proofreading the calculations
- removing unecessary calls to ALFI script
- simplifying code to re-use functions

* methods to rank nearest neighbors in embeddings

* example script to plot state change of a single track

* test using scaled features

* phate embeddings

* removing dataframe from the compute_phate
adding docstring

* adding phate to the prediction writer and moving it as dependency.

* changing the phate defaults in the prediction writer.

* ruff

* fixing bug in phate in predict writer

* adding code for measuring the smoothness

* cleanup to run on triplet and ntxent

* fix plots for smoothnes

* nexnt loss prototype

* exclude the negative pair from dataloader and forward pass

* adding option using pytorch-metric-learning implementation
and modifying previous to match same input args

* removing our implementation of NTXentLoss and using pytorch metric

* ruff

* remove blank line diff

* remove blank line diff

* simplying the engine

* explicit target shape argument in the HCS data module

* Revert "explicit target shape argument in the HCS data module"

This reverts commit 464d4c9.

* Explicit target shape argument in the HCS data module (#212)

* explicit target shape argument in the HCS data module

* update docstring

* update test cases

* Gradio example (#158)

* initial demo

* using the predict_step

* modifying paths to chkpt and example pngs

* updating gradio as the one on Huggingface

* adding configurable phate arguments via config

* script to recompute phate and overwrite the previous phate data

* ruff

* solving redundancies

* modularizing the smoothness

* removing redundant _fit_phate()

* ruff

---------

Co-authored-by: Ziwen Liu <[email protected]>
Co-authored-by: Alishba Imran <[email protected]>
Co-authored-by: Ziwen Liu <[email protected]>

* renaming cross_dissimilairy with  pairwaise_distance_matrix

---------

Co-authored-by: Ziwen Liu <[email protected]>
Co-authored-by: Alishba Imran <[email protected]>
Co-authored-by: Ziwen Liu <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

5 participants