Skip to content

Official repository for AADD-2025: 1st Adversarial Attacks on Deepfake Detectors Challenge - ACM Multimedia 2025 Grand Challenge. Investigating adversarial vulnerabilities in deepfake detection models through adversarial perturbations that evade classifiers while preserving visual similarity.

License

Notifications You must be signed in to change notification settings

mfs-iplab/aadd-2025

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

57 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

AADD-2025: Adversarial Attacks on Deepfake Detectors Challenge

Logos

1st Adversarial Attacks on Deepfake Detectors: A Challenge in the Era of AI-Generated Media

Grand Challenge at ACM Multimedia 2025


๐ŸŽฏ Overview

The AADD-2025 Challenge investigated adversarial vulnerabilities of deepfake detection models by generating adversarial perturbed deepfake images that evade standard classifiers while maintaining high visual similarity to the original deepfake content. Given the increasing reliance on deepfake detectors in forensic analysis and content moderation, ensuring their robustness against adversarial attacks has relevant importance.

๐ŸŽช Challenge Description

The goal of this challenge was to expose and address vulnerabilities in current deepfake detection systems by designing adversarial attacks that alter deepfake images, rendering them unrecognizable as synthetic content to 4 proposed classifiers, preserving high visual similarity to the original images.

๐Ÿ“Š Dataset Structure

Participants were provided with a dataset divided into sixteen subsets:

High Quality Resolution:

  • 4 GAN-based models (high quality)
  • 4 Diffusion-based models (high quality)

Low Quality Resolution:

  • 4 GAN-based models (low quality)
  • 4 Diffusion-based models (low quality)
- Dataset
โ”œโ”€โ”€ train
โ”‚   โ”œโ”€โ”€ fake
โ”‚   โ”‚   โ”œโ”€โ”€ hq
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ Adobe Firefly
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ Deep AI
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ Flux.1.1 Pro
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ Hotpot AI
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ Nvidia Sana PAG
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ Stable Diffusion 3.5
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ StyleGAN2
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ StyleGAN3
โ”‚   โ”‚   โ”‚   โ””โ”€โ”€ Tencent Hunyuan
โ”‚   โ”‚   โ””โ”€โ”€ lq
โ”‚   โ”‚       โ”œโ”€โ”€ Deep AI
โ”‚   โ”‚       โ”œโ”€โ”€ Flux.1
โ”‚   โ”‚       โ”œโ”€โ”€ Freepik
โ”‚   โ”‚       โ”œโ”€โ”€ Hotpot AI
โ”‚   โ”‚       โ”œโ”€โ”€ Nvidia Sana PAG
โ”‚   โ”‚       โ”œโ”€โ”€ Stable Diffusion Attend and Excite
โ”‚   โ”‚       โ”œโ”€โ”€ StyleGAN
โ”‚   โ”‚       โ”œโ”€โ”€ StyleGAN3
โ”‚   โ”‚       โ””โ”€โ”€ Tencent Hunyuan
โ”‚   โ””โ”€โ”€ real
โ”‚       โ”œโ”€โ”€ hq
โ”‚       โ”‚   โ””โ”€โ”€ ffhq
โ”‚       โ””โ”€โ”€ lq
โ”‚           โ””โ”€โ”€ celeba_hq
โ””โ”€โ”€ test
    โ”œโ”€โ”€ fake
    โ”‚   โ”œโ”€โ”€ hq
    โ”‚   โ”‚   โ”œโ”€โ”€ Adobe Firefly
    โ”‚   โ”‚   โ”œโ”€โ”€ Deep AI
    โ”‚   โ”‚   โ”œโ”€โ”€ Flux.1.1 Pro
    โ”‚   โ”‚   โ”œโ”€โ”€ Hotpot AI
    โ”‚   โ”‚   โ”œโ”€โ”€ Nvidia Sana PAG
    โ”‚   โ”‚   โ”œโ”€โ”€ Stable Diffusion 3.5
    โ”‚   โ”‚   โ”œโ”€โ”€ StyleGAN2
    โ”‚   โ”‚   โ”œโ”€โ”€ StyleGAN3
    โ”‚   โ”‚   โ””โ”€โ”€ Tencent Hunyuan
    โ”‚   โ””โ”€โ”€ lq
    โ”‚       โ”œโ”€โ”€ Deep AI
    โ”‚       โ”œโ”€โ”€ Flux.1
    โ”‚       โ”œโ”€โ”€ Freepik
    โ”‚       โ”œโ”€โ”€ Hotpot AI
    โ”‚       โ”œโ”€โ”€ Nvidia Sana PAG
    โ”‚       โ”œโ”€โ”€ Stable Diffusion Attend and Excite
    โ”‚       โ”œโ”€โ”€ StyleGAN
    โ”‚       โ”œโ”€โ”€ StyleGAN3
    โ”‚       โ””โ”€โ”€ Tencent Hunyuan
    โ””โ”€โ”€ real
        โ”œโ”€โ”€ hq
        โ”‚   โ””โ”€โ”€ ffhq
        โ””โ”€โ”€ lq
            โ””โ”€โ”€ celeba_hq

Note: Participants had to focus on the entire dataset across all subsets.

๐Ÿ“‹ Submission Requirements

  1. Adversarial Images: Submit the generated adversarial deepfake images
  2. Technical Abstract: Provide a detailed description of your methodology
  3. Results Documentation: Include performance metrics and analysis

๐Ÿ“ฅ Evaluation Resources

Final Evaluation Scripts See here

๐Ÿ† Results & Rankings

The challenge ended with strong global participation. Here are the final standings:

Rank Team Name Organization/Institution Final Score
๐Ÿฅ‡ 1st MR-CAS ๐Ÿ‡จ๐Ÿ‡ณ University of Chinese Academy of Sciences 2740
๐Ÿฅˆ 2nd Safe AI ๐Ÿ‡ฐ๐Ÿ‡ท UNIST (Ulsan National Institute of Science and Technology) 2709
๐Ÿฅ‰ 3rd RoMa ๐Ÿ‡ฉ๐Ÿ‡ช Fraunhofer SIT | ATHENE Center 2679
4th GRADIANT ๐Ÿ‡ช๐Ÿ‡ธ Gradiant 2631
5th DASH ๐Ÿ‡ฐ๐Ÿ‡ท Sungkyunkwan University 2618
6th SecureML ๐Ÿ‡ฎ๐Ÿ‡น University of Cagliari 2490
7th MICV ๐Ÿ‡จ๐Ÿ‡ณ Ant Group 2434
8th WHU_PB ๐Ÿ‡จ๐Ÿ‡ณ Wuhan University 2354
9th The Adversaries ๐Ÿ‡ธ๐Ÿ‡ฌ Singapore Institute of Technology 2341
10th DeFakePol ๐Ÿ‡ต๐Ÿ‡ฑ Samsung Research Poland 1665
11th False Negative ๐Ÿ‡จ๐Ÿ‡ณ The Hong Kong Polytechnic University 1602
12th VYAKRITI 2.0 ๐Ÿ‡ฎ๐Ÿ‡ณ Apex Institute of technology Chandigarh University 1041
13th MILab ๐Ÿ‡จ๐Ÿ‡ณ University of Science and Technology of China 110

๐Ÿ“Š Timeline

The AADD-2025 Challenge followed this timeline:

  • โœ… March 03, 2025: Competition Website Launch
  • โœ… March 15 - May 22, 2025: Registration Period (Extended)
  • โœ… April 10, 2025: Test Set and Classificator Release
  • โœ… June 15, 2025: Final Submission Deadline
  • โœ… June 22, 2025: Leaderboard Publication and Rankings Release
  • โœ… June 30, 2025: Paper Submission Deadline (Top 3 Teams Only)
  • โณ July 24, 2025: Announcement regarding full paper submission
  • โณ August 01, 2025: Camera ready - Grand Challenge Solutions (Top 3 Teams Only)
  • โณ ACM Multimedia 2025: Conference & Winners Recognition

๐Ÿ“ Publication Opportunities

The top 3 teams were invited to submit full-length papers describing their methods in detail. These papers underwent a rigorous review process managed by the challenge organizers, with accepted papers included in the ACM Multimedia 2025 proceedings.

๐Ÿ‘ฅ Organizing Committee

Chairs

Name Role Email Affiliation
Luca Guarnera Research Fellow [email protected] Department of Mathematics and Computer Science, University of Catania, Italy
Francesco Guarnera Research Fellow [email protected] Department of Mathematics and Computer Science, University of Catania, Italy

Co-Chairs

Name Role Email Affiliation
Sebastiano Battiato Full Professor [email protected] Department of Mathematics and Computer Science, University of Catania, Italy
Giovanni Puglisi Associate Professor [email protected] Department of Mathematics and Informatics, University of Cagliari, Italy
Zahid Akhtar Associate Professor [email protected] State University of New York Polytechnic Institute, USA

Technical Committee

Name Role Email Affiliation
Mirko Casu PhD Student [email protected] Department of Mathematics and Computer Science, University of Catania, Italy
Orazio Pontorno PhD Student [email protected] Department of Mathematics and Computer Science, University of Catania, Italy
Claudio Vittorio Ragaglia PhD Student [email protected] Department of Mathematics and Computer Science, University of Catania, Italy

๐Ÿ“ง Contact Information

Main Contact: Mirko Casu
Email: [email protected]

๐Ÿ“– Citation

Dataset Attribution: Part of this challenge dataset is based on the WILD dataset. If you use the data, please also cite:

@misc{bongini2025wildnewinthewildimage,
      title={WILD: a new in-the-Wild Image Linkage Dataset for synthetic image attribution}, 
      author={Pietro Bongini and Sara Mandelli and Andrea Montibeller and Mirko Casu and Orazio Pontorno and Claudio Vittorio Ragaglia and Luca Zanchetta and Mattia Aquilina and Taiba Majid Wani and Luca Guarnera and Benedetta Tondi and Giulia Boato and Paolo Bestagini and Irene Amerini and Francesco De Natale and Sebastiano Battiato and Mauro Barni},
      year={2025},
      eprint={2504.19595},
      archivePrefix={arXiv},
      primaryClass={cs.MM},
      url={https://arxiv.org/abs/2504.19595}, 
}

If you use or refer to this challenge, please cite our ACM Multimedia 2025 paper:

@inproceedings{battiato2025adversarial,
  title={Adversarial Attacks on Deepfake Detectors: A Challenge in the Era of AI-Generated Media (AADD-2025)},
  author={Battiato, Sebastiano and Casu, Mirko and Guarnera, Francesco and Guarnera, Luca and Puglisi, Giovanni and Pontorno, Orazio and Ragaglia, Claudio Vittorio and Akhtar, Zahid},
  booktitle={Proceedings of the 33rd ACM International Conference on Multimedia},
  pages={13714--13719},
  year={2025}
}

๐ŸŒ Related Resources

Institutional Affiliations:

ยฉ 2025 University of Catania.
Powered by the Multimedia Security and Forensics group of the Image Processing Laboratory (IPLAB).

๐Ÿท๏ธ Keywords

Deepfake Detection, Adversarial Attacks, Computer Vision, Digital Forensics, AI Security, Media Authentication, Challenge Competition, ACM Multimedia


Logos

About

Official repository for AADD-2025: 1st Adversarial Attacks on Deepfake Detectors Challenge - ACM Multimedia 2025 Grand Challenge. Investigating adversarial vulnerabilities in deepfake detection models through adversarial perturbations that evade classifiers while preserving visual similarity.

Topics

Resources

License

Stars

Watchers

Forks

Contributors 3

  •  
  •  
  •  

Languages