-
Notifications
You must be signed in to change notification settings - Fork 180
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
DINOv2
- Loading branch information
Showing
1 changed file
with
63 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
import torch | ||
import torch.nn as nn | ||
from transformers import Dinov2Model, Dinov2PreTrainedModel | ||
import os | ||
|
||
class CustomDINONormModel(nn.Module): | ||
def __init__(self, name, num_classes=8): | ||
super(CustomDINONormModel, self).__init__() | ||
self.dino_model = Dinov2Model.from_pretrained(name) | ||
self.classifier = nn.Sequential(*[ | ||
nn.Linear(1024, 256), | ||
nn.LayerNorm(256), | ||
nn.Linear(256, 128), | ||
nn.ReLU(), | ||
nn.Linear(128, num_classes), | ||
]) | ||
|
||
def forward(self, x, only_fc=False, only_feat=False, return_embed=False, **kwargs): | ||
""" | ||
Args: | ||
x: input tensor, depends on only_fc and only_feat flag | ||
only_fc: only use classifier, input should be features before classifier | ||
only_feat: only return pooled features | ||
return_embed: return word embedding, used for vat | ||
""" | ||
# Extract features using DinoV2 model | ||
if return_embed: | ||
embed = self.dino_model(x) | ||
return embed | ||
|
||
out_dict = self.dino_model(x, output_hidden_states=True, return_dict=True) | ||
last_hidden_state = out_dict['last_hidden_state'] | ||
pooled_output = torch.mean(last_hidden_state, 1) # Perform mean pooling | ||
|
||
if only_fc: | ||
logits = self.classifier(pooled_output) | ||
return logits | ||
|
||
if only_feat: | ||
return pooled_output | ||
|
||
logits = self.classifier(pooled_output) | ||
result_dict = {'logits': logits, 'feat': pooled_output} | ||
return result_dict | ||
|
||
|
||
def group_matcher(self, coarse=False, prefix=''): | ||
matcher = dict(stem=r'^{}dino_model.embeddings'.format(prefix), blocks=r'^{}dino_model.encoder.layer.(\d+)'.format(prefix)) | ||
return matcher | ||
|
||
def no_weight_decay(self): | ||
return [] | ||
|
||
|
||
|
||
def dinov2_vitl14(pretrained=True, pretrained_path=None, **kwargs): | ||
model = CustomDINONormModel(name='facebookresearch/dinov2_vitl14', **kwargs) | ||
return model | ||
|
||
|
||
def dinov2_vitb14(pretrained=True, pretrained_path=None, **kwargs): | ||
model = CustomDINONormModel(name='facebookresearch/dinov2_vitb14', **kwargs) | ||
return model |