Releases: mlondschien/ivmodels
ivmodels 0.5.2
0.5.2 - 2024-10-03
Bug fixes:
- The
Summary
now correctly includes the rank and J test results.
ivmodels 0.5.1
0.5.1 - 2024-09-16
Bug fixes:
- Fixed the
setuptools
configuration.
ivmodels 0.5.0
0.5.0 - 2024-08-27
New features:
-
The Wald test now supports robust covariance estimation.
-
New method
length
forConfidenceSet
.
Other changes:
-
One can now pass the tolerance parameter
tol
to the optimization algorithm in
lagrange_multiplier_test
andinverse_lagrange_multiplier_test
via thekwargs
. -
KClass
now raises ifkappa >= 1
(as for the LIML and TSLS estimators) and the number of instruments is less than the number of
endogenous regressors. -
The
Summary
now only includes and prints the results of the J-statistic and (multivariate) F-test for instrument strength if this makes sense. -
The docs have been updated and include examples.
ivmodels 0.4.0
0.4.0 - 2024-08-08
New features:
-
New test
j_test
of the overidentifying restrictions. -
The tests
inverse_lagrange_multiplier_test
andinverse_conditional_likelihood_ratio_test
now possibly return unions of intervals, instead of one large conservative interval.
Bug fixes:
-
Fixed bug in
KClass.fit
whenC
is notNone
andM_{[Z, C]} X
is not full rank. -
Fixed bug in
inverse_conditional_likelihood_ratio_test
whenk == mw + mx
andC
is notNone
. -
Fixed bug in
utils._characteristic_roots
ifb == np.array([[0]])
. This now correctly returnsnp.inf
.
Other changes:
- The
Summary
now additionally reports the LIML variant of the J-statistic.
ivmodels 0.3.1
Bug fixes:
- Fixed bug in
inverse_conditional_likelihood_ratio_test
.
ivmodels 0.3.0
New features:
-
New functions
inverse_lagrange_multiplier_test
andinverse_conditional_likelihood_ratio_test
to approximate the 1 dimensional confidence sets by inverting the corresponding (subvector) tests. -
New classes
ConfidenceSet
-
New classes
CoefficientTable
, holding a table of coefficients and their p-values, andSummary
, holding information about the model fit. -
The class
KClass
gets new attributes after fitting a model:endogenous_names_
,exogenous_names_
, andinstrument_names_
. If pandas is installed, there is alsonames_coefs_
. -
The tests
anderson_rubin_test
,lagrange_multiplier_test
,likelihood_ratio_test
, andwald_test
and their inversesinverse_anderson_rubin_test
,inverse_lagrange_multiplier_test
,inverse_likelihood_ratio_test
, andinverse_wald_test
now support an additional parameterD
of exogenous covariates to be included in the test. This is not supported by the conditional likelihood ratio test.
Other changes:
-
The function
lagrange_multiplier_test
is now slightly faster. -
The method
KClass.fit
now acceptspandas.Series
as arguments toy
.
ivmodels 0.2.0
New features:
-
New method
ivmodels.simulate.simulate_guggenberger12
to draw from the data
generating process of Guggenberger (2012). -
The utility functions
ivmodels.utils.proj
andivmodels.utils.oproj
now accept multiple args to be projected. Usage of this results in performance
improvements.
Other changes:
-
The utility functions
ivmodels.utils.proj
andivmodels.utils.oproj
now use thescipy.linalg(..., lapack_driver="gelsy")
. This results in a speedup. -
The numerical integration function
ivmodels.tests.conditional_likelihood_ratio.conditional_likelihood_ratio_critical_value_function
has been reparametrized, yielding a speedup.
ivmodels 0.1.0
Initial release