Skip to content
Open
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 36 additions & 0 deletions mnist_gan/Makefile
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@

TARGET := mnist_gan
SRC := mnist_gan.cpp
LIBS_NAME := armadillo mlpack

CXX := g++
CXXFLAGS += -std=c++11 -Wall -Wextra -O3 -DNDEBUG
# Use these CXXFLAGS instead if you want to compile with debugging symbols and
# without optimizations.
# CXXFLAGS += -std=c++11 -Wall -Wextra -g -O0
LDFLAGS += -fopenmp
LDFLAGS += -lboost_serialization
LDFLAGS += -larmadillo
LDFLAGS += -L /home/viole/mlpack/build/lib/ # /path/to/mlpack/library/ # if installed locally.
# Add header directories for any includes that aren't on the
# default compiler search path.
INCLFLAGS := -I /home/viole/mlpac/build/include/
CXXFLAGS += $(INCLFLAGS)

OBJS := $(SRC:.cpp=.o)
LIBS := $(addprefix -l,$(LIBS_NAME))
CLEAN_LIST := $(TARGET) $(OBJS)

# default rule
default: all

$(TARGET): $(OBJS)
$(CXX) $(CXXFLAGS) $(OBJS) -o $(TARGET) $(LDFLAGS) $(LIBS)

.PHONY: all
all: $(TARGET)

.PHONY: clean
clean:
@echo CLEAN $(CLEAN_LIST)
@rm -f $(CLEAN_LIST)
205 changes: 205 additions & 0 deletions mnist_gan/mnist_gan.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,205 @@
#include <mlpack/core.hpp>
#include <mlpack/core/data/split_data.hpp>

#include <mlpack/methods/ann/init_rules/gaussian_init.hpp>
#include <mlpack/methods/ann/loss_functions/sigmoid_cross_entropy_error.hpp>
#include <mlpack/methods/ann/gan/gan.hpp>
#include <mlpack/methods/ann/layer/layer.hpp>
#include <mlpack/methods/softmax_regression/softmax_regression.hpp>

#include <ensmallen.hpp>

using namespace mlpack;
using namespace mlpack::data;
using namespace mlpack::ann;
using namespace mlpack::math;
using namespace mlpack::regression;
using namespace std::placeholders;


int main()
{
size_t trainRatio = 0.8;
size_t dNumKernels = 32;
size_t discriminatorPreTrain = 5;
size_t batchSize = 64;
size_t noiseDim = 100;
size_t generatorUpdateStep = 1;
size_t numSamples = 10;
size_t cycles = 10;
double stepSize = 0.0003;
double eps = 1e-8;
size_t numEpochs = 1;
double tolerance = 1e-5;
bool shuffle = true;
double multiplier = 10;

std::cout << std::boolalpha
<< " batchSize = " << batchSize << std::endl
<< " generatorUpdateStep = " << generatorUpdateStep << std::endl
<< " noiseDim = " << noiseDim << std::endl
<< " numSamples = " << numSamples << std::endl
<< " stepSize = " << stepSize << std::endl
<< " numEpochs = " << numEpochs << std::endl
<< " shuffle = " << shuffle << std::endl;


arma::mat mnistDataset;
data::Load("/home/viole/Documents/datasets/digit-recognizer/train.csv", mnistDataset, true);

std::cout << arma::size(mnistDataset) << std::endl;

mnistDataset = mnistDataset.submat(1, 0, mnistDataset.n_rows-1, mnistDataset.n_cols-1);
mnistDataset /= 255.0;

arma::mat trainDataset, valDataset;
data::Split(mnistDataset, trainDataset, valDataset, trainRatio);

std::cout << " Dataset Loaded " << std::endl;
std::cout << " Train Dataset Size : (" << trainDataset.n_rows << ", " << trainDataset.n_cols << ")" << std::endl;

std::cout << " Validation Dataset Size : (" << valDataset.n_rows << ", " << valDataset.n_cols << ")" << std::endl;

arma::mat trainTest, dump;
data::Split(trainDataset, dump, trainTest, 0.045);

size_t iterPerCycle = (numEpochs * trainDataset.n_cols);

/**
* @brief Model Architecture:
*
* Discriminator:
* 28x28x1-----------> conv (32 filters of size 5x5,
* stride = 1, padding = 2)----------> 28x28x32
* 28x28x32----------> ReLU -----------------------------> 28x28x32
* 28x28x32----------> Mean pooling ---------------------> 14x14x32
* 14x14x32----------> conv (64 filters of size 5x5,
* stride = 1, padding = 2)------> 14x14x64
* 14x14x64----------> ReLU -----------------------------> 14x14x64
* 14x14x64----------> Mean pooling ---------------------> 7x7x64
* 7x7x64------------> Linear Layer ---------------------> 1024
* 1024--------------> ReLU -----------------------------> 1024
* 1024 -------------> Linear ---------------------------> 1
*
*
* Generator:
*
*
* Note: Output of a Convolution layer = [(W-K+2P)/S + 1]
* where, W : Size of input volume
* K : Kernel size
* P : Padding
* S : Stride
*/


// Creating the Discriminator network.
FFN<SigmoidCrossEntropyError<> > discriminator;
discriminator.Add<Convolution<> >(1, // Number of input activation maps
dNumKernels, // Number of output activation maps
5, // Filter width
5, // Filter height
1, // Stride along width
1, // Stride along height
2, // Padding width
2, // Padding height
28, // Input widht
28); // Input height
// Adding first ReLU
discriminator.Add<ReLULayer<> >();
// Adding mean pooling layer
discriminator.Add<MeanPooling<> >(2, 2, 2, 2);
// Adding second convolution layer
discriminator.Add<Convolution<> >(dNumKernels, 2 * dNumKernels, 5, 5, 1, 1,
2, 2, 14, 14);
// Adding second ReLU
discriminator.Add<ReLULayer<> >();
// Adding second mean pooling layer
discriminator.Add<MeanPooling<> >(2, 2, 2, 2);
// Adding linear layer
discriminator.Add<Linear<> >(7 * 7 * 2 * dNumKernels, 1024);
// Adding third ReLU
discriminator.Add<ReLULayer<> >();
// Adding final layer
discriminator.Add<Linear<> >(1024, 1);


// Creating the Generator network
FFN<SigmoidCrossEntropyError<> > generator;
generator.Add<Linear<> >(noiseDim, 3136);
generator.Add<BatchNorm<> >(3136);
generator.Add<ReLULayer<> >();
generator.Add<Convolution<> >(1, // Number of input activation maps
noiseDim / 2, // Number of output activation maps
3, // Filter width
3, // Filter height
2, // Stride along width
2, // Stride along height
1, // Padding width
1, // Padding height
56, // input width
56); // input height
// Adding first batch normalization layer
generator.Add<BatchNorm<> >(39200);
// Adding first ReLU
generator.Add<ReLULayer<> >();
// Adding a bilinear interpolation layer
generator.Add<BilinearInterpolation<> >(28, 28, 56, 56, noiseDim / 2);
// Adding second convolution layer
generator.Add<Convolution<> >(noiseDim / 2, noiseDim / 4, 3, 3, 2, 2, 1, 1,
56, 56);
// Adding second batch normalization layer
generator.Add<BatchNorm<> >(19600);
// Adding second ReLU
generator.Add<ReLULayer<> >();
// Adding second bilinear interpolation layer
generator.Add<BilinearInterpolation<> >(28, 28, 56, 56, noiseDim / 4);
// Adding third convolution layer
generator.Add<Convolution<> >(noiseDim / 4, 1, 3, 3, 2, 2, 1, 1, 56, 56);
// Adding final tanh layer
generator.Add<TanHLayer<> >();

// Creating GAN.
GaussianInitialization gaussian(0, 1);
ens::Adam optimizer(stepSize, // Step size of optimizer.
batchSize, // Batch size.
0.9, // Exponential decay rate for first moment estimates.
0.999, // Exponential decay rate for weighted norm estimates.
eps, // Value used to initialize the mean squared gradient parameter.
iterPerCycle, // Maximum number of iterations.
tolerance, // Tolerance.
shuffle); // Shuffle.
std::function<double()> noiseFunction = [] () {
return math::RandNormal(0, 1);};
GAN<FFN<SigmoidCrossEntropyError<> >, GaussianInitialization,
std::function<double()> > gan(generator, discriminator,
gaussian, noiseFunction, noiseDim, batchSize, generatorUpdateStep,
discriminatorPreTrain, multiplier);

std::cout << "Training ... " << std::endl;

const clock_t beginTime = clock();
// Cycles for monitoring training progress.
for( int i = 0; i < cycles; i++)
{
// Training the neural network. For first iteration, weights are random,
// thus using current values as starting point.
gan.Train(trainDataset,
optimizer,
ens::PrintLoss(),
ens::ProgressBar(),
ens::Report());

optimizer.ResetPolicy() = false;
std::cout << " Model Performance " <<
gan.Evaluate(gan.Parameters(), // Parameters of the network.
i, // Index of current input.
batchSize); // Batch size.
Copy link
Member

@kartikdutt18 kartikdutt18 Jul 27, 2021

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

For saving periodically, you can use https://github.com/mlpack/models/blob/master/ensmallen_utils/periodic_save.hpp
You can download the file and use it temporarily for testing / forming the notebook.

}
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We don't need to use loops anymore, You can refer to mnist_cnn.


std::cout << " Time taken to train -> " << float(clock()-beginTime) / CLOCKS_PER_SEC << "seconds" << std::endl;

data::Save("./saved_models/ganMnist.bin", "ganMnist", gan);
std::cout << "Model saved in mnist_gan/saved_models." << std::endl;

}