postgwas-tools is a Python package that provides a collection of tools for post-GWAS (Genome-Wide Association Study) analysis, annotation, and visualization.
It simplifies steps such as plotting, SNP annotation, and result parsing for large-scale GWAS projects.
git clone https://github.com/Dufouranto0/postgwas-tools.git
cd postgwas-tools
python3 -m venv venv
. venv/bin/activate
pip install -e .pip install postgwas-toolssrc/postgwas_tools/
├── annot/
│ ├── fuma/ # FUMA-related post-GWAS visualization
│ ├── ldsc/ # LD Score Regression utilities
│ ├── magma/ # MAGMA annotation helpers
│ ├── replication/ # Replication and cross-cohort checks
│ └── utils.py # Common helper functions
└── mostest/ # MOSTest-specific result processors
You can generate a multi-model Manhattan plot directly from the command line:
manhattan_plot -p /path/to/gwas1.sumstats /path/to/gwas2.sumstats \
-t manhattan \
-o ./resultsOr using a file pattern:
manhattan_plot -p "/path/to/*.sumstats"This will create a high-resolution manhattan_plot.png in the output directory.
If you just want a light manhattan plot, you can do:
light_manhattan_plot -p /path/to/gwas_input.txtFor detailed usage examples, including QQ plots, locus-based analysis, and replication workflows, see: WORKFLOW.md
- Python ≥ 3.9
- pandas, numpy, matplotlib, seaborn, scipy, qmplot, h5py
All dependencies are automatically installed when you run pip install -e ..
If you use postgwas-tools in your work, please cite:
Dufournet A. postgwas-tools: a Python suite for streamlined post-GWAS analysis. CEA NeuroSpin, 2025.