Skip to content

A distributed visual search and visual data analytics platform.

Notifications You must be signed in to change notification settings

nnzhan/DeepVideoAnalytics

 
 

Repository files navigation

Deep Video Analytics     Build Status Build Status

UI Screenshot

Deep Video Analytics is a platform for indexing and extracting information from videos and images. With latest version of docker installed correctly, you can run Deep Video Analytics in minutes locally (even without a GPU) using a single command.

Installation & Overview

For installation instructions and overview please visit https://www.deepvideoanalytics.com and go through the presentation.

The standalone OCR example has been moved to /docs/experiments/ocr directory.

Architecture

Deep Video Analytics implements a client-server architecture pattern, where clients can access state of the server via a REST API. For uploading, processing data, training models, performing queries, i.e. mutating the state clients can send DVAPQL (Deep Video Analytics Processing and Query Language) formatted as JSON. Each query represents a directed acyclic graph of operations.

Libraries present in this repository and their licenses

Library Link to the license
YAD2K MIT License
AdminLTE2 MIT License
FabricJS MIT License
Facenet MIT License
JSFeat MIT License
MTCNN MIT License
Insight Face MIT License
CRNN.pytorch MIT License
Original CRNN code by Baoguang Shi MIT License
Object Detector App using TF Object detection API MIT License
Plotly.js MIT License
Text Detection CTPN MIT License
SphereFace MIT License
Segment annotator BSD 3-clause
Youtube 8M feature extractor weights Apache 2.0
LOPQ Apache 2.0
Open Images Pre-trained network Apache 2.0
Interval Tree Apache 2.0

Libraries present in container (/root/thirdparty/)

Library Link to the license
faiss BSD + PATENTS License
dlib Boost Software License

Additional libraries & frameworks

License & Copyright

Copyright 2016-2018, Akshay Bhat, All rights reserved.

Contact

Deep Video Analytics is nearing stable 1.0, we expect to release in Summer 2018. The license will be relaxed once a stable release version is reached. Please contact me for more information.

About

A distributed visual search and visual data analytics platform.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 87.9%
  • HTML 10.1%
  • CSS 2.0%
  • Cuda 0.0%
  • PHP 0.0%
  • Shell 0.0%