fast approximation of large Riemann zeta zeros on the critical line
Usage: zzz [OPTION...] N [offset] [count]
fast approximation of large Riemann zeta zeros
-d, --digits=DIGITS extra digits for number formatting [default 6]
-e, --evaluate evaluate Riemann zeta function value at the
approximate zero location
-g, --debug debug counting function from <N> to <N+offset> in
<count> steps
-k, --k=K use first k primes for zero counting function
approximation [default 100]
-p, --precision=PREC arb precision for counting function approximation
[default 256]
-t, --tolerance=TOL tolerance for bisection [default 1e-6]
-v, --verbose verbose progress output
-w, --window=WIN initial span around Lambert W asymptotic zero
location +- WIN [default 1.5]
-z, --zeta-prec=ZETA_PREC arb precision for zeta evaluation [default 64]
-?, --help Give this help list
--usage Give a short usage message
-V, --version Print program version
Note: obsolete inner sum approximation, not used any more.
Combines quadratic and cubic spline with correct frequency and tangents to match the amplitude.
In comparison with k=-∞ (basic Lambert W approximation).
see ~odlyzko/zeta_tables/zeros3
$ time ./zzz -ve -k 1000 1e12 +1
argument s = (0.500000000000000000 + 267653395648.844684j) +/- (0, 1.05e-65j)
value z = (0.355290959100415380 + 0.132397324302526229j) +/- (3.70e-20, 2.34e-20j)
267653395648.844684
real 0m0.470s
user 0m0.456s
sys 0m0.007s
$ time ./zzz -k 10000 1e36 42420637374017961984
81029194732694548890047854481676713.009431
real 0m2.381s
user 0m2.366s
sys 0m0.005s
81029194732694548890047854481676712.94002 prev approximate #10^36+42420637374017961983
81029194732694548890047854481676712.98790 published #10^36+42420637374017961984
81029194732694548890047854481676713.00943 approximate #10^36+42420637374017961984
81029194732694548890047854481676713.08748 next approximate #10^36+42420637374017961985
Using zeros approximated by zzz -k 1000
.
range 0 to 20 (50 zeros) | range 541 to 661 (1,000 zeros) | range 7920-8020 (10,000 zeros) |
---|---|---|
- Bernhard Riemann: On the Number of Prime Numbers less than a Given Quantity.
- Jonathan W. Bober, Ghaith A. Hiary: New computations of the Riemann zeta function on the critical line
- M. V. Berry, J. P. Keating: The Riemann Zeros and Eigenvalue Asymptotics
- Guilherme França, André LeClair: Statistical and other properties of Riemann zeros based on an explicit equation for the n-th zero on the critical line