Skip to content
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 1 addition & 3 deletions docs/source/api/data.rst
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,6 @@ Data
.. autosummary::
:toctree: generated/

ConstantData
MutableData
get_data
Data
get_data
Minibatch
2 changes: 1 addition & 1 deletion pymc/gp/hsgp_approx.py
Original file line number Diff line number Diff line change
Expand Up @@ -620,7 +620,7 @@ def prior_linearized(self, X: TensorLike):
they may share the same basis.

Correct results when using `prior_linearized` in tandem with
`pm.set_data` and `pm.MutableData` require that the `Xs` are
`pm.set_data` and `pm.Data` require that the `Xs` are
zero-centered, so its mean must be subtracted.

An example is given below.
Expand Down
12 changes: 6 additions & 6 deletions pymc/sampling/forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -607,8 +607,8 @@ def sample_posterior_predictive(

import pymc as pm

with pm.Model(coords_mutable={"trial": [0, 1, 2]}) as model:
x = pm.MutableData("x", [-1, 0, 1], dims=["trial"])
with pm.Model(coords={"trial": [0, 1, 2]}) as model:
x = pm.Data("x", [-1, 0, 1], dims=["trial"])
beta = pm.Normal("beta")
noise = pm.HalfNormal("noise")
y = pm.Normal("y", mu=x * beta, sigma=noise, observed=[-2, 0, 3], dims=["trial"])
Expand All @@ -634,8 +634,8 @@ def sample_posterior_predictive(

.. code-block:: python

with pm.Model(coords_mutable={"trial": [3, 4]}) as predictions_model:
x = pm.MutableData("x", [-2, 2], dims=["trial"])
with pm.Model(coords={"trial": [3, 4]}) as predictions_model:
x = pm.Data("x", [-2, 2], dims=["trial"])
beta = pm.Normal("beta")
noise = pm.HalfNormal("noise")
y = pm.Normal("y", mu=x * beta, sigma=noise, dims=["trial"])
Expand All @@ -651,8 +651,8 @@ def sample_posterior_predictive(

.. code-block:: python

with pm.Model(coords_mutable={"trial": [3, 4]}) as distinct_predictions_model:
x = pm.MutableData("x", [-2, 2], dims=["trial"])
with pm.Model(coords={"trial": [3, 4]}) as distinct_predictions_model:
x = pm.Data("x", [-2, 2], dims=["trial"])
beta = pm.Normal("beta")
noise = pm.HalfNormal("noise")
extra_noise = pm.HalfNormal("extra_noise", sigma=noise)
Expand Down
6 changes: 3 additions & 3 deletions tests/sampling/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -1022,7 +1022,7 @@ def test_logging_sampled_basic_rvs_posterior_mutable(self, mock_sample_results,
caplog.clear()
elif kind == "Dataset":
# Dataset has all MCMC posterior samples and the values of the coordinates. This
# enables it to see that the coordinates have not changed, but the MutableData is
# enables it to see that the coordinates have not changed, but the Data is
# assumed volatile by default
assert caplog.record_tuples == [
("pymc.sampling.forward", logging.INFO, "Sampling: [b, y]")
Expand All @@ -1031,7 +1031,7 @@ def test_logging_sampled_basic_rvs_posterior_mutable(self, mock_sample_results,

original_offsets = model["offsets"].get_value()
with model:
# Changing the MutableData values. This will only be picked up by InferenceData
# Changing the Data values. This will only be picked up by InferenceData
pm.set_data({"offsets": original_offsets + 1})
pm.sample_posterior_predictive(samples)
if kind == "MultiTrace":
Expand Down Expand Up @@ -1072,7 +1072,7 @@ def test_logging_sampled_basic_rvs_posterior_mutable(self, mock_sample_results,
caplog.clear()

with model:
# Changing the mutable coordinate values, but not shape, and also changing MutableData.
# Changing the mutable coordinate values, but not shape, and also changing Data.
# This will trigger resampling of all variables
model.set_dim("name", new_length=3, coord_values=["A", "B", "D"])
pm.set_data({"offsets": original_offsets + 1, "y_obs": np.zeros((10, 3))})
Expand Down
Loading