Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Discontinuous Galerkin methods #3

Draft
wants to merge 34 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
34 commits
Select commit Hold shift + click to select a range
9501363
Start on DG methods
IanHawke Feb 11, 2019
924457b
Fix plotting issue, nodal to modal
IanHawke Feb 11, 2019
a8c7b0c
Got to the evolution, but check mass matrix normalization
IanHawke Feb 12, 2019
7130a50
A different mass matrix, which isn't diagonal?
IanHawke Feb 12, 2019
436ff4f
Now works for linear smooth wave
IanHawke Feb 14, 2019
a0339da
Start looking at limiting
IanHawke Feb 14, 2019
da086b2
Convergence for low m
IanHawke Feb 26, 2019
99d5571
scipy time integrator fixes all convergence issues
IanHawke Feb 26, 2019
050390f
Try using 2-norm: doesn't help?
IanHawke Feb 27, 2019
6e104ba
DG convergence plot
IanHawke Feb 27, 2019
e6d832a
Fix WENO convergence plot
IanHawke Feb 27, 2019
afb7f9f
Switch RK4 case back to Gaussian
IanHawke Feb 27, 2019
eea5a37
Show modal structure within cells
IanHawke Feb 27, 2019
1ee4380
Moment limiting. Not correct yet
IanHawke Mar 1, 2019
0f054d6
Limiting works, but broke scipy evolution
IanHawke Mar 1, 2019
1928762
Fix various PEP8 issues
IanHawke Mar 2, 2019
6145740
Limiting works with scipy ode
IanHawke Mar 2, 2019
e100850
Better convergence figures
IanHawke Mar 3, 2019
74a5c74
Figure of runtime efficiency
IanHawke Mar 4, 2019
1f93f40
Output earlier DG figures
IanHawke Mar 4, 2019
b3af182
Fix figure output
IanHawke Mar 4, 2019
cf000b9
Fix figure output
IanHawke Mar 4, 2019
a480adb
Do convergence on 5 periods
IanHawke Mar 5, 2019
20c30bc
Fix legend
IanHawke Mar 5, 2019
ef13447
Using numba to speed up the WENO code
IanHawke Mar 5, 2019
dbaba5a
Redo efficiency with only limited DG and everything optimized
IanHawke Mar 6, 2019
c58bda8
Annotate plot and tidy DG optimization
IanHawke Mar 6, 2019
24bd2be
DG for Burgers. Cross check BCs in advection
IanHawke Mar 6, 2019
fb9c0d7
Slight tidy up of Burgers
IanHawke Mar 6, 2019
4e909f6
Start DG Euler
IanHawke Mar 6, 2019
3307d99
DG for Euler
IanHawke Mar 7, 2019
f896628
Shock entropy interaction problem
IanHawke Mar 8, 2019
44e3a3b
More on shock entropy problem
IanHawke Mar 8, 2019
db51a9e
Merge branch 'weno_convergence' into dg
IanHawke Mar 15, 2019
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 7 additions & 4 deletions advection/advection.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,14 +86,17 @@ def fill_BCs(self):
# right boundary
self.a[self.ihi+1+n] = self.a[self.ilo+n]

def norm(self, e):
def norm(self, e, norm="inf"):
""" return the norm of quantity e which lives on the grid """
if len(e) != 2*self.ng + self.nx:
return None

#return np.sqrt(self.dx*np.sum(e[self.ilo:self.ihi+1]**2))
return np.max(abs(e[self.ilo:self.ihi+1]))

if norm==2:
return np.sqrt(self.dx*np.sum(e[self.ilo:self.ihi+1]**2))
elif norm=="inf":
return np.max(abs(e[self.ilo:self.ihi+1]))
else:
raise NotImplementedError("Only norms implemented are '2' and 'inf'")

class Simulation(object):

Expand Down
135 changes: 135 additions & 0 deletions advection/compare_schemes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
"""
Comparing efficiency (accuracy vs runtime and memory) for various schemes.

Note: needs 'pip install memory_profiler' first.

At least for now, the memory usage seems to be completely misleading.
"""

import timeit
# from memory_profiler import memory_usage
import numpy
from matplotlib import pyplot
import advection
import weno
import dg


def run_weno(order=2, nx=32):
g = advection.Grid1d(nx, ng=order+1, xmin=0, xmax=1)
s = weno.WENOSimulation(g, 1, C=0.5, weno_order=order)
s.init_cond("sine")
s.evolve_scipy()


def run_dg(m=3, nx=8, limiter=None):
g = dg.Grid1d(nx, ng=1, xmin=0, xmax=1, m=m)
s = dg.Simulation(g, 1, C=0.5/(2*m+1), limiter=limiter)
s.init_cond("sine")
s.evolve_scipy()


def weno_string(order=2, nx=32):
return f"run_weno(order={order}, nx={nx})"


def dg_string(m=3, nx=8, limiter=None):
return f"run_dg(m={m}, nx={nx}, limiter='{limiter}')"


def time_weno(order=2, nx=32):
return timeit.timeit(weno_string(order, nx),
globals=globals(), number=1)


def time_dg(m=3, nx=8, limiter=None):
return timeit.timeit(dg_string(m, nx, limiter),
globals=globals(), number=1)


def errs_weno(order=2, nx=32):
g = advection.Grid1d(nx, ng=order+1, xmin=0, xmax=1)
s = weno.WENOSimulation(g, 1, C=0.5, weno_order=order)
s.init_cond("sine")
a_init = g.a.copy()
s.evolve_scipy()
return g.norm(g.a - a_init)


def errs_dg(m=3, nx=8, limiter=None):
g = dg.Grid1d(nx, ng=1, xmin=0, xmax=1, m=m)
s = dg.Simulation(g, 1, C=0.5/(2*m+1), limiter=limiter)
s.init_cond("sine")
a_init = g.a.copy()
s.evolve_scipy()
return g.norm(g.a - a_init)


weno_orders = [3, 5, 7]
weno_N = [12, 16, 24, 32, 54, 64, 96, 128]
# weno_orders = [3]
# weno_N = [24, 32, 54]
weno_times = numpy.zeros((len(weno_orders), len(weno_N)))
weno_errs = numpy.zeros_like(weno_times)
# weno_memory = numpy.zeros_like(weno_times)

# Do one evolution to kick-start numba
run_weno(3, 8)
run_dg(3, 8)

for i_o, order in enumerate(weno_orders):
for i_n, nx in enumerate(weno_N):
print(f"WENO{order}, {nx} points")
weno_errs[i_o, i_n] = errs_weno(order, nx)
weno_times[i_o, i_n] = time_weno(order, nx)
# weno_memory[i_o, i_n] = max(memory_usage((run_weno, (order, nx))))

dg_ms = [2, 4, 8]
dg_N = 2**numpy.array(range(3, 7))
# dg_ms = [2]
# dg_N = 2**numpy.array(range(3, 6))
dg_moment_times = numpy.zeros((len(dg_ms), len(dg_N)))
dg_moment_errs = numpy.zeros_like(dg_moment_times)
# dg_nolimit_memory = numpy.zeros_like(dg_nolimit_times)
# dg_moment_memory = numpy.zeros_like(dg_moment_times)

for i_m, m in enumerate(dg_ms):
for i_n, nx in enumerate(dg_N):
print(f"DG, m={m}, {nx} points")
dg_moment_errs[i_m, i_n] = errs_dg(m, nx, 'moment')
dg_moment_times[i_m, i_n] = time_dg(m, nx, 'moment')
# dg_moment_memory[i_m, i_n] = max(memory_usage((run_dg,
# (m, nx, 'moment'))))

colors = "brk"
fig, ax = pyplot.subplots(1, 1)
for i_o, order in enumerate(weno_orders):
ax.loglog(weno_times[i_o, :], weno_errs[i_o, :], f'{colors[i_o]}o-',
label=f'WENO, r={order}')
colors = "gyc"
for i_m, m in enumerate(dg_ms):
ax.loglog(dg_moment_times[i_m, :], dg_moment_errs[i_m, :],
f'{colors[i_m]}^:', label=rf'DG, $m={m}$')
ax.set_xlabel("Runtime [s]")
ax.set_ylabel(r"$\|$Error$\|_2$")
ax.set_title("Efficiency of WENO vs DG")

i_o = 0
i_n = 4
con_style = "arc,angleA=180,armA=50,rad=10"
ax.annotate(fr'WENO, $N={weno_N[i_n]}$', textcoords='data',
xy=(weno_times[i_o, i_n], 1.5*weno_errs[i_o, i_n]),
xytext=(5e-1, 1e-2),
arrowprops=dict(arrowstyle='->', connectionstyle=con_style))
i_m = 1
i_n = 0
ax.annotate(fr'DG, $N={dg_N[i_n]}$', textcoords='data',
xy=(dg_moment_times[i_m, i_n], 0.5*dg_moment_errs[i_m, i_n]),
xytext=(3e-1, 1e-8),
arrowprops=dict(arrowstyle='->', connectionstyle=con_style))

fig.tight_layout()
lgd = ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
fig.savefig('dg_weno_efficiency.pdf',
bbox_extra_artists=(lgd,), bbox_inches='tight')
pyplot.show()
Loading