-
-
Notifications
You must be signed in to change notification settings - Fork 3k
Mypyc Trace Logging
Mypyc can optionally include logging in the generated code that produces a sampled trace of various events or operations that happen during execution. For example, you can use this to find code locations where instances of a specific class are constructed, or identify the most commonly called method of a class.
The trace logs are line-based text files that use :
as the field separator. They are are easy to analyze using ad-hoc Python scripts, Unix command-line tools or an SQL database, for example.
You will first need to compile the target code using trace logging enabled. When the code is executed, it will write the trace log into
mypyc_trace.txt
. If you use the mypyc
command-line tool to compile your code, define the MYPYC_TRACE_LOG
environment variable with value 1
:
MYPYC_LOG_TRACE=1 mypyc <...>
If you use mypycify()
, pass log_trace=True
as an extra argument.
If you are analyzing mypy, there is a helper script misc/log_trace_heck.py
in the mypy GitHub repository that can compile mypy with trace log enabled and either perform a self check or type check a code fragment (e.g. -c "import some_module"
).
Here is an example log output (details may change over time and this may not 100% reflect what you will see):
mypy.semanal.SemanticAnalyzer.flatten_lvalues::primitive_op:list_get_item_unsafe
mypy.binder.ConditionalTypeBinder._get::primitive_op:int_gt
mypy.semanal.SemanticAnalyzer.is_func_scope:7094:call_c:CPyList_GetItemShort
mypy.typetraverser.TypeTraverserVisitor.traverse_type_tuple::primitive_op:var_object_size
mypy.typeops.try_contracting_literals_in_union:1080:call_c:PyIter_Next
mypy.renaming.LimitedVariableRenameVisitor.visit_name_expr:544:call_c:PySequence_Contains
mypy.util.split_module_names:80:call_c:CPyList_GetItemShort
mypy.expandtype.ExpandTypeVisitor.visit_instance::primitive_op:int_eq
mypy.semanal.SemanticAnalyzer.process_type_annotation:3823:call_c:CPyList_GetItemShort
Let's look at a few log items in detail. First, this is a call to a native method:
mypy.types.Type.__init__:251:call:mypy.nodes.Context.__init__
The event was logged in mypy.types.Type._init__
on line 251 (based on the first two fields). The type
of the event is call
(a native call), and the called function was mypy.nodes.Context.__init__
.
This event is a list get item operation:
mypy.semanal.SemanticAnalyzer.is_func_scope:7094:call_c:CPyList_GetItemShort
The event type call_c
indicates a call of a primitive C function or a Python C API function.
Python C API functions have the prefix Py
while mypyc primitive functions have the prefix CPy
.
This event indicates reading the object size of a variable-length object:
mypy.typetraverser.TypeTraverserVisitor.traverse_type_tuple::primitive_op:var_object_size
It's a low-level primitive operation (primitive_op
) and usually isn't very interesting, since
these operations are few fast.
This is another very fast operation (integer equality):
mypy.binder.ConditionalTypeBinder._get::primitive_op:int_gt
In section we will go through some common C primitives or C API functions that are useful to recognize.
These are optimized primitives specialized based on the static types of expressions:
-
CPyList_GetItemShort
: Get list item (a[i]
) -
CPyList_GetItem
: Get list item (another variant) -
PyList_New
: Create a list -
PyList_Append
: Append to a list (a.append(x)
) -
PyList_Check
: Equivalent toisinstance(x, list)
-
PyDict_New
: Create a dict -
PyDict_Contains
: Dict contains (x in d
) -
CPyDict_GetItem
: Get dict item (d[x]
) -
CPyDict_GetWithNone
: Get dict item (another variant) -
CPyDict_SetItem
: Set dict item (d[x] = y
) -
CPyStr_Equal
: String equality -
CPyTagged_Add
: Add two integers -
PySequence_Contains
:x in <sequence>
-
PySequence_Tuple
: Equivalent totuple(x)
-
PyUnicode_Contains
: Substring check -
PyUnicode_Concat
: Concatenate strings -
PySet_New
: Create a set -
PySet_Add
: Add an item to a set -
PySet_Contains
: Set contains (x in s
)
These are slower, generic operations that work for arbitrary objects (including with Any
types):
-
PyObject_GetIter
: Equivalent toiter(x)
-
PyIter_Next
: Equivalent tonext(it)
-
PyObject_IsTrue
: Is an object considered to be true -
PyObject_RichCompare
: Compare two objects -
PyObject_Vectorcall
: Call an object (much slower than optimized native calls) -
PyObject_IsInstance
: Equivalent toisinstance(x, t)
-
CPyObject_Hash
: Equivalent tohash(x)
-
CPyObject_Size
: Equivalent tolen(x)
-
CPyObject_GetAttr3
: Look up an attribute of an object the slow way -
CPyObject_GetAttr
: Another way to look up an attribute -
PyObject_Not
: Boolean not operation (not x
) -
CPyGen_SetStopIterationValue
: RaiseStopIteration
with a value
These are internal operations that don't directly map to Python code:
-
CPy_NoErrOccurred
: Check if an exception was raised by an operation or function call
You can analyze data easily using standard Unix command line tools, including cut
, sort
, shuf
, uniq
and wc
.
We also use ripgrep (rg
) to search for substrings and regular expressions, but grep also works.
Display the most commonly called C primitives through the call_c
event:
$ rg :call_c: mypyc_trace.txt | cut -d':' -f4 | sort | uniq -c | sort -n
...
4970 PyIter_Next
4987 PyDict_Contains
5074 PyList_Append
7470 CPyStr_Equal
7623 PyList_New
7987 PySet_Contains
8489 CPyList_GetItemShort
We are doing lots of PyIter_Next
operations, which are generic and thus somewhat
slow. Maybe we can do better? The second example digs deeper into this.
Display a random sample of 15 events that call PyIter_Next
and sort by function:
$ rg PyIter_Next mypyc_trace.txt | shuf | tail -15 | sort
mypy.binder.ConditionalTypeBinder.update_from_options:233:call_c:PyIter_Next
mypy.binder.ConditionalTypeBinder.update_from_options:233:call_c:PyIter_Next
mypy.graph_utils.prepare_sccs:69:call_c:PyIter_Next
mypy.indirection.TypeIndirectionVisitor.find_modules:35:call_c:PyIter_Next
mypy.indirection.TypeIndirectionVisitor.find_modules:35:call_c:PyIter_Next
mypy.semanal_main.semantic_analyze_target:409:call_c:PyIter_Next
mypy.solve.solve_constraints:61:call_c:PyIter_Next
mypy.solve.solve_one:266:call_c:PyIter_Next
mypy.types.CallableType.__init__:1887:call_c:PyIter_Next
mypy.types.CallableType.__init__:1887:call_c:PyIter_Next
mypy.types.CallableType.__init__:1887:call_c:PyIter_Next
mypy.types.flatten_nested_tuples:3752:call_c:PyIter_Next
mypy.type_visitor.TypeQuery.query_types:452:call_c:PyIter_Next
mypy.type_visitor.TypeTranslator.translate_types:312:call_c:PyIter_Next
mypy.type_visitor.TypeTranslator.translate_types:312:call_c:PyIter_Next
Group by function where call happens:
$ rg PyIter_Next mypyc_trace.txt | cut -d':' -f1 | sort | uniq -c | sort -n
...
108 mypy.type_visitor.TypeQuery.query_types
112 mypy.fastparse.ASTConverter.translate_stmt_list
115 mypy.typeops.FreezeTypeVarsVisitor.visit_callable_type
120 mypy.binder.ConditionalTypeBinder.update_from_options
190 mypy.messages.MessageBuilder.incompatible_argument
198 mypy.fastparse.ASTConverter.translate_opt_expr_list
279 mypy.expandtype.ExpandTypeVisitor.expand_types
351 mypy.indirection.TypeIndirectionVisitor.find_modules
396 mypy.type_visitor.TypeTranslator.translate_types
1252 mypy.types.CallableType.__init__
It looks like CallableType.__init__
does a lot of potentially slow generic iteration. On which
source lines does this happen?
$ rg PyIter_Next mypyc_trace.txt | rg CallableType.__init__ | cut -d':' -f2 | sort | uniq -c | sort -n
1252 1887
Everything happens on line 1887.