Skip to content

TRT-LLM loading mechanism tool #3398

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 8 commits into
base: main
Choose a base branch
from
9 changes: 9 additions & 0 deletions py/torch_tensorrt/dynamo/_compiler.py
Original file line number Diff line number Diff line change
@@ -98,6 +98,7 @@ def cross_compile_for_windows(
enable_weight_streaming: bool = _defaults.ENABLE_WEIGHT_STREAMING,
tiling_optimization_level: str = _defaults.TILING_OPTIMIZATION_LEVEL,
l2_limit_for_tiling: int = _defaults.L2_LIMIT_FOR_TILING,
use_distributed_mode_trace: bool = _defaults.USE_DISTRIBUTED_MODE_TRACE,
**kwargs: Any,
) -> torch.fx.GraphModule:
"""Compile an ExportedProgram module using TensorRT in Linux for Inference in Windows
@@ -173,6 +174,7 @@ def cross_compile_for_windows(
enable_weight_streaming (bool): Enable weight streaming.
tiling_optimization_level (str): The optimization level of tiling strategies. A higher level allows TensorRT to spend more time searching for better tiling strategy. We currently support ["none", "fast", "moderate", "full"].
l2_limit_for_tiling (int): The target L2 cache usage limit (in bytes) for tiling optimization (default is -1 which means no limit).
use_distributed_mode_trace (bool): Using aot_autograd to trace the graph. This is enabled when DTensors or distributed tensors are present in distributed model
**kwargs: Any,
Returns:
torch.fx.GraphModule: Compiled FX Module, when run it will execute via TensorRT
@@ -332,6 +334,7 @@ def cross_compile_for_windows(
"enable_weight_streaming": enable_weight_streaming,
"tiling_optimization_level": tiling_optimization_level,
"l2_limit_for_tiling": l2_limit_for_tiling,
"use_distributed_mode_trace": use_distributed_mode_trace,
}

# disable the following settings is not supported for cross compilation for windows feature
@@ -421,6 +424,7 @@ def compile(
enable_weight_streaming: bool = _defaults.ENABLE_WEIGHT_STREAMING,
tiling_optimization_level: str = _defaults.TILING_OPTIMIZATION_LEVEL,
l2_limit_for_tiling: int = _defaults.L2_LIMIT_FOR_TILING,
use_distributed_mode_trace: bool = _defaults.USE_DISTRIBUTED_MODE_TRACE,
**kwargs: Any,
) -> torch.fx.GraphModule:
"""Compile an ExportedProgram module for NVIDIA GPUs using TensorRT
@@ -498,6 +502,7 @@ def compile(
enable_weight_streaming (bool): Enable weight streaming.
tiling_optimization_level (str): The optimization level of tiling strategies. A higher level allows TensorRT to spend more time searching for better tiling strategy. We currently support ["none", "fast", "moderate", "full"].
l2_limit_for_tiling (int): The target L2 cache usage limit (in bytes) for tiling optimization (default is -1 which means no limit).
use_distributed_mode_trace (bool): Using aot_autograd to trace the graph. This is enabled when DTensors or distributed tensors are present in distributed model
**kwargs: Any,
Returns:
torch.fx.GraphModule: Compiled FX Module, when run it will execute via TensorRT
@@ -674,6 +679,7 @@ def compile(
"enable_weight_streaming": enable_weight_streaming,
"tiling_optimization_level": tiling_optimization_level,
"l2_limit_for_tiling": l2_limit_for_tiling,
"use_distributed_mode_trace": use_distributed_mode_trace,
}

settings = CompilationSettings(**compilation_options)
@@ -964,6 +970,7 @@ def convert_exported_program_to_serialized_trt_engine(
enable_weight_streaming: bool = _defaults.ENABLE_WEIGHT_STREAMING,
tiling_optimization_level: str = _defaults.TILING_OPTIMIZATION_LEVEL,
l2_limit_for_tiling: int = _defaults.L2_LIMIT_FOR_TILING,
use_distributed_mode_trace: bool = _defaults.USE_DISTRIBUTED_MODE_TRACE,
**kwargs: Any,
) -> bytes:
"""Convert an ExportedProgram to a serialized TensorRT engine
@@ -1029,6 +1036,7 @@ def convert_exported_program_to_serialized_trt_engine(
enable_weight_streaming (bool): Enable weight streaming.
tiling_optimization_level (str): The optimization level of tiling strategies. A higher level allows TensorRT to spend more time searching for better tiling strategy. We currently support ["none", "fast", "moderate", "full"].
l2_limit_for_tiling (int): The target L2 cache usage limit (in bytes) for tiling optimization (default is -1 which means no limit).
use_distributed_mode_trace: bool = _defaults.USE_DISTRIBUTED_MODE_TRACE,
Returns:
bytes: Serialized TensorRT engine, can either be saved to a file or deserialized via TensorRT APIs
"""
@@ -1147,6 +1155,7 @@ def convert_exported_program_to_serialized_trt_engine(
"enable_weight_streaming": enable_weight_streaming,
"tiling_optimization_level": tiling_optimization_level,
"l2_limit_for_tiling": l2_limit_for_tiling,
"use_distributed_mode_trace": use_distributed_mode_trace,
}

settings = CompilationSettings(**compilation_options)
63 changes: 0 additions & 63 deletions py/torch_tensorrt/dynamo/conversion/converter_utils.py
Original file line number Diff line number Diff line change
@@ -1002,66 +1002,3 @@ def args_bounds_check(
args: Tuple[Argument, ...], i: int, replacement: Optional[Any] = None
) -> Any:
return args[i] if len(args) > i and args[i] is not None else replacement


def load_tensorrt_llm() -> bool:
"""
Attempts to load the TensorRT-LLM plugin and initialize it.

Returns:
bool: True if the plugin was successfully loaded and initialized, False otherwise.
"""
try:
import tensorrt_llm as trt_llm # noqa: F401

_LOGGER.info("TensorRT-LLM successfully imported")
return True
except (ImportError, AssertionError) as e_import_error:
# Check for environment variable for the plugin library path
plugin_lib_path = os.environ.get("TRTLLM_PLUGINS_PATH")
if not plugin_lib_path:
_LOGGER.warning(
"TensorRT-LLM is not installed. Please install TensorRT-LLM or set TRTLLM_PLUGINS_PATH to the directory containing libnvinfer_plugin_tensorrt_llm.so to use converters for torch.distributed ops",
)
return False

_LOGGER.info(f"TensorRT-LLM Plugin lib path found: {plugin_lib_path}")
try:
# Load the shared library
handle = ctypes.CDLL(plugin_lib_path)
_LOGGER.info(f"Successfully loaded plugin library: {plugin_lib_path}")
except OSError as e_os_error:
_LOGGER.error(
f"Failed to load libnvinfer_plugin_tensorrt_llm.so from {plugin_lib_path}"
f"Ensure the path is correct and the library is compatible",
exc_info=e_os_error,
)
return False

try:
# Configure plugin initialization arguments
handle.initTrtLlmPlugins.argtypes = [ctypes.c_void_p, ctypes.c_char_p]
handle.initTrtLlmPlugins.restype = ctypes.c_bool
except AttributeError as e_plugin_unavailable:
_LOGGER.warning(
"Unable to initialize the TensorRT-LLM plugin library",
exc_info=e_plugin_unavailable,
)
return False

try:
# Initialize the plugin
TRT_LLM_PLUGIN_NAMESPACE = "tensorrt_llm"
if handle.initTrtLlmPlugins(None, TRT_LLM_PLUGIN_NAMESPACE.encode("utf-8")):
_LOGGER.info("TensorRT-LLM plugin successfully initialized")
return True
else:
_LOGGER.warning("TensorRT-LLM plugin library failed in initialization")
return False
except Exception as e_initialization_error:
_LOGGER.warning(
"Exception occurred during TensorRT-LLM plugin library initialization",
exc_info=e_initialization_error,
)
return False
return False
Original file line number Diff line number Diff line change
@@ -11,11 +11,11 @@
from torch_tensorrt.dynamo.conversion._ConverterRegistry import (
dynamo_tensorrt_converter,
)
from torch_tensorrt.dynamo.conversion.converter_utils import load_tensorrt_llm
from torch_tensorrt.dynamo.lowering.passes.fuse_distributed_ops import (
tensorrt_fused_nccl_all_gather_op,
tensorrt_fused_nccl_reduce_scatter_op,
)
from torch_tensorrt.dynamo.utils import load_tensorrt_llm

_LOGGER: logging.Logger = logging.getLogger(__name__)

128 changes: 127 additions & 1 deletion py/torch_tensorrt/dynamo/utils.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,13 @@
from __future__ import annotations

import ctypes
import gc
import logging
import os
import shutil
import subprocess
import sys
import urllib.request
import warnings
from dataclasses import fields, replace
from enum import Enum
@@ -14,7 +20,7 @@
from torch._subclasses.fake_tensor import FakeTensor
from torch.fx.experimental.proxy_tensor import unset_fake_temporarily
from torch_tensorrt._Device import Device
from torch_tensorrt._enums import dtype
from torch_tensorrt._enums import Platform, dtype
from torch_tensorrt._features import ENABLED_FEATURES
from torch_tensorrt._Input import Input
from torch_tensorrt.dynamo import _defaults
@@ -812,3 +818,123 @@ def is_tegra_platform() -> bool:
if torch.cuda.get_device_capability() in [(8, 7), (7, 2)]:
return True
return False


def download_plugin_lib_path(py_version: str, platform: str) -> str:
plugin_lib_path = None

# Downloading TRT-LLM lib
# TODO: check how to fix the 0.18.0 hardcode below
base_url = "https://pypi.nvidia.com/tensorrt-llm/"
file_name = f"tensorrt_llm-0.18.0-{py_version}-{py_version}-{platform}.whl"
download_url = base_url + file_name
if not (os.path.exists(file_name)):
try:
logger.debug(f"Downloading {download_url} ...")
urllib.request.urlretrieve(download_url, file_name)
logger.debug("Download succeeded and TRT-LLM wheel is now present")
except subprocess.CalledProcessError as e:
logger.error(
"Download failed (file not found or connection issue). Error code:",
e.returncode,
)
except FileNotFoundError:
logger.error("wget is required but not found. Please install wget.")

# Proceeding with the unzip of the wheel file
# This will exist if the filename was already downloaded
if os.path.exists("./tensorrt_llm/libs/libnvinfer_plugin_tensorrt_llm.so"):
plugin_lib_path = "./tensorrt_llm/libs/" + "libnvinfer_plugin_tensorrt_llm.so"
else:
try:
import zipfile
except:
raise ImportError(
"zipfile module is required but not found. Please install zipfile"
)
with zipfile.ZipFile(file_name, "r") as zip_ref:
zip_ref.extractall(".") # Extract to a folder named 'tensorrt_llm'
plugin_lib_path = (
"./tensorrt_llm/libs/" + "libnvinfer_plugin_tensorrt_llm.so"
)
return plugin_lib_path


def load_tensorrt_llm() -> bool:
"""
Attempts to load the TensorRT-LLM plugin and initialize it.
Either the env variable TRTLLM_PLUGINS_PATH can specify the path
Or the user can specify USE_TRTLLM_PLUGINS as either of (1, true, yes, on) to download the TRT-LLM distribution and load it

Returns:
bool: True if the plugin was successfully loaded and initialized, False otherwise.
"""
plugin_lib_path = os.environ.get("TRTLLM_PLUGINS_PATH")
if not plugin_lib_path:
# this option can be used by user if TRTLLM_PLUGINS_PATH is not set by user
use_trtllm_plugin = os.environ.get("USE_TRTLLM_PLUGINS", "0").lower() in (
"1",
"true",
"yes",
"on",
)
if not use_trtllm_plugin:
logger.warning(
"Neither TRTLLM_PLUGIN_PATH is set nor is it directed to download the shared library. Please set either of the two to use TRT-LLM libraries in torchTRT"
)
return False
else:
# this is used as the default py version
py_version = f"cp312"
platform = Platform.current_platform()

platform = str(platform).lower()
plugin_lib_path = download_plugin_lib_path(py_version, platform)

try:
# Load the shared TRT-LLM file
handle = ctypes.CDLL(plugin_lib_path)
logger.info(f"Successfully loaded plugin library: {plugin_lib_path}")
except OSError as e_os_error:
if "libmpi" in str(e_os_error):
logger.warning(
f"Failed to load libnvinfer_plugin_tensorrt_llm.so from {plugin_lib_path}. "
f"The dependency libmpi.so is missing. "
f"Please install the packages libmpich-dev and libopenmpi-dev.",
exc_info=e_os_error,
)
else:
logger.warning(
f"Failed to load libnvinfer_plugin_tensorrt_llm.so from {plugin_lib_path}"
f"Ensure the path is correct and the library is compatible",
exc_info=e_os_error,
)
return False

try:
# Configure plugin initialization arguments
handle.initTrtLlmPlugins.argtypes = [ctypes.c_void_p, ctypes.c_char_p]
handle.initTrtLlmPlugins.restype = ctypes.c_bool
except AttributeError as e_plugin_unavailable:
logger.warning(
"Unable to initialize the TensorRT-LLM plugin library",
exc_info=e_plugin_unavailable,
)
return False

try:
# Initialize the plugin
TRT_LLM_PLUGIN_NAMESPACE = "tensorrt_llm"
if handle.initTrtLlmPlugins(None, TRT_LLM_PLUGIN_NAMESPACE.encode("utf-8")):
logger.info("TensorRT-LLM plugin successfully initialized")
return True
else:
logger.warning("TensorRT-LLM plugin library failed in initialization")
return False
except Exception as e_initialization_error:
logger.warning(
"Exception occurred during TensorRT-LLM plugin library initialization",
exc_info=e_initialization_error,
)
return False
return False