forked from ggml-org/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
Refactor: Move matrix packing outside GEMM kernels #10
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
shalinib-ibm
wants to merge
1
commit into
master
Choose a base branch
from
prepack_tinyblas_ppc
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
In class tinyBLAS_PPC, previously, packing of input matrices A and B was performed on-the-fly within each GEMM microkernel. This patch refactors the code to decouple packing from kernel by introducing a preprocessing step that packs matrices once before any kernel is invoked. Benefits: - Enables better memory locality and data reuse - Simplifies the kernel logic by focusing purely on computation - Improves overall GEMM performance, especially for large matrix sizes Signed-off-by: Shalini Salomi Bodapati <[email protected]>
shalinib-ibm
pushed a commit
that referenced
this pull request
Oct 23, 2025
…gml-org#16038) Initalizing RESERVED_NAME in is_reserved_name() is not thread safe and leads to corrupted memory when used from multiple threads as can be seen in the asan trace below. This fixes the initialization to make it thread-safe. #0 0x000100abd018 in std::__1::pair<std::__1::__hash_iterator<std::__1::__hash_node<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, void*>*>, bool> std::__1::__hash_table<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, std::__1::hash<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>, std::__1::equal_to<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>>::__emplace_unique_key_args<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&) __hash_table:1565 #1 0x000100ab0320 in SchemaConverter::visit(nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&) json-schema-to-grammar.cpp:802 #2 0x000100aafc48 in std::__1::__function::__func<build_grammar(std::__1::function<void (common_grammar_builder const&)> const&, common_grammar_options const&)::$_2, std::__1::allocator<build_grammar(std::__1::function<void (common_grammar_builder const&)> const&, common_grammar_options const&)::$_2>, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> (std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&, nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&)>::operator()(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&, nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&) function.h:319 #3 0x000100a2c938 in std::__1::__function::__func<common_chat_params_init_llama_3_x(minja::chat_template const&, templates_params const&, bool)::$_0::operator()(common_grammar_builder const&) const::'lambda'(nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&), std::__1::allocator<common_chat_params_init_llama_3_x(minja::chat_template const&, templates_params const&, bool)::$_0::operator()(common_grammar_builder const&) const::'lambda'(nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&)>, void (nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&)>::operator()(nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&) function.h:319 #4 0x000100a139f8 in foreach_function(nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&, std::__1::function<void (nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&)> const&) chat.cpp:762 #5 0x000100a2a7f4 in std::__1::__function::__func<common_chat_params_init_llama_3_x(minja::chat_template const&, templates_params const&, bool)::$_0, std::__1::allocator<common_chat_params_init_llama_3_x(minja::chat_template const&, templates_params const&, bool)::$_0>, void (common_grammar_builder const&)>::operator()(common_grammar_builder const&) function.h:319 #6 0x000100aa98f4 in build_grammar(std::__1::function<void (common_grammar_builder const&)> const&, common_grammar_options const&) json-schema-to-grammar.cpp:982 #7 0x0001009c9314 in common_chat_params_init_llama_3_x(minja::chat_template const&, templates_params const&, bool) chat.cpp:1110 #8 0x0001009b8afc in common_chat_templates_apply_jinja(common_chat_templates const*, common_chat_templates_inputs const&) chat.cpp:1992 #9 0x0001009b533c in common_chat_templates_apply(common_chat_templates const*, common_chat_templates_inputs const&) chat.cpp:2074 #10 0x000100810120 in llamacpp_apply_chat_template+0x724 (predict_oai-98384e17fb94e863:arm64+0x100090120) ... ==45482==Register values: x[0] = 0x00006020004147f8 x[1] = 0x00006080000013c8 x[2] = 0x0000000000000000 x[3] = 0x0000604006289738 x[4] = 0x0000000000000002 x[5] = 0x0000000000000001 x[6] = 0x04034000004b4000 x[7] = 0x0000000000000001 x[8] = 0xbebebebebebebebe x[9] = 0x17d7d7d7d7d7d7d7 x[10] = 0x00000c04000828ff x[11] = 0x0000000000000001 x[12] = 0x000000002018d383 x[13] = 0x0000000000000000 x[14] = 0xfa0000000000fafa x[15] = 0x000010700001ffff x[16] = 0x000000019dc012c0 x[17] = 0x00000001021284f8 x[18] = 0x0000000000000000 x[19] = 0x00000001700acdc0 x[20] = 0x0000000000000002 x[21] = 0x000000002018d384 x[22] = 0x16dd16fd2e731151 x[23] = 0x0000007000020000 x[24] = 0x0000000100c69c08 x[25] = 0x0000000100c69c20 x[26] = 0x00006080000013c7 x[27] = 0x0000000100c69c00 x[28] = 0x00000001700acd60 fp = 0x00000001700aceb0 lr = 0x0000000100abce30 sp = 0x00000001700acd60 AddressSanitizer can not provide additional info. SUMMARY: AddressSanitizer: SEGV __hash_table:1565 in std::__1::pair<std::__1::__hash_iterator<std::__1::__hash_node<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, void*>*>, bool> std::__1::__hash_table<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, std::__1::hash<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>, std::__1::equal_to<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>>::__emplace_unique_key_args<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&) Thread T5 created by T0 here: #0 0x0001020b99d4 in pthread_create+0x5c (libclang_rt.asan_osx_dynamic.dylib:arm64e+0x359d4) #1 0x000100873910 in std::sys::pal::unix::thread::Thread::new::h77254fdd87a28e05+0x118 (predict_oai-98384e17fb94e863:arm64+0x1000f3910) #2 0x0001007c7a1c in test::run_test::haeb3c2bcd5ed6cf6+0x76c (predict_oai-98384e17fb94e863:arm64+0x100047a1c) #3 0x0001007aedb0 in test::console::run_tests_console::he9d142d704f3a986+0x149c (predict_oai-98384e17fb94e863:arm64+0x10002edb0) #4 0x0001007c5758 in test::test_main::hf86a5e20735245b9+0x118 (predict_oai-98384e17fb94e863:arm64+0x100045758) #5 0x0001007c5da0 in test::test_main_static::h61ee9c8fd30abca0+0x54 (predict_oai-98384e17fb94e863:arm64+0x100045da0) ... ==45482==ABORTING
shalinib-ibm
pushed a commit
that referenced
this pull request
Jan 14, 2026
…rg#17764) * Squashed commit of the following: commit b3c6bf4 Author: Abhijit Ramesh <[email protected]> Date: Mon Dec 1 18:29:00 2025 -0800 ggml webgpu: fix xielu parameter passing (#11) The XIELU operation was incorrectly using static_cast to convert float parameters to uint32_t, which converted numeric values instead of preserving IEEE 754 bit patterns. This caused incorrect values to be interpreted by the GPU shader. * Use reinterpret_cast to preserve float bit patterns when passing through uint32_t params buffer * Update WGSL shader parameter types from u32 to f32 * Re-enable XIELU support (was disabled due to numerical issues) Fixes NMSE test failures for XIELU operation on WebGPU backend. commit 5ca9b5e Author: neha-ha <[email protected]> Date: Tue Nov 18 12:17:00 2025 -0800 Refactored pipelines and workgroup calculations (#10) * refactored pipelines * refactored workgroup calculation * removed commented out block of prior maps * Clean up ceiling division pattern --------- Co-authored-by: Neha Abbas <[email protected]> Co-authored-by: Reese Levine <[email protected]> Author: James Contini <[email protected]> Date: Wed Oct 29 23:13:06 2025 -0700 formatted embed wgsl and ggml-webgpu.cpp commit e1f6bae Author: James Contini <[email protected]> Date: Wed Oct 29 23:08:37 2025 -0700 implemented REPL_Template support and removed bug in unary operators kernel commit 8c70b8f Author: James Contini <[email protected]> Date: Wed Oct 15 16:14:20 2025 -0700 responded and dealt with PR comments commit f9282c6 Author: James Contini <[email protected]> Date: Sun Oct 12 13:41:41 2025 -0700 removed unnecesarry checking if node->src[1] exists for unary operators commit 4cf28d7 Author: James Contini <[email protected]> Date: Sun Oct 12 13:32:45 2025 -0700 All operators (inlcluding xielu) working commit 74c6add Author: James Contini <[email protected]> Date: Fri Oct 10 13:16:48 2025 -0700 fixed autoconfig commit 3627499 Author: James Contini <[email protected]> Date: Fri Oct 10 13:10:46 2025 -0700 removed vestigial files commit cb08583 Author: James Contini <[email protected]> Date: Fri Oct 10 12:59:32 2025 -0700 abides by editor-config commit 5360e28 Author: James Contini <[email protected]> Date: Fri Oct 10 12:45:57 2025 -0700 rms_norm double declaration bug atoned commit 7b09baa Merge: 8a6ec84 74b8fc1 Author: James Contini <[email protected]> Date: Fri Oct 10 11:50:03 2025 -0700 resolving merge conflicts commit 8a6ec84 Author: James Contini <[email protected]> Date: Wed Oct 8 18:06:47 2025 -0700 unary operators pass ggml tests commit c3ae382 Author: James Contini <[email protected]> Date: Wed Oct 1 16:22:40 2025 -0700 neg passes backend test commit aa1c9b2 Author: James Contini <[email protected]> Date: Tue Sep 30 23:55:27 2025 -0700 neg f16xf32xip builds and runs, havent actually ran a model that uses neg kernel yet though Co-authored-by: James Contini <[email protected]> Co-authored-by: Neha Abbas <[email protected]> Co-authored-by: Abhijit Ramesh <[email protected]> * Remove extra code and format * Add ops documentation (finally) * Update ggml/src/ggml-webgpu/wgsl-shaders/embed_wgsl.py Co-authored-by: Sigbjørn Skjæret <[email protected]> --------- Co-authored-by: James Contini <[email protected]> Co-authored-by: Neha Abbas <[email protected]> Co-authored-by: Abhijit Ramesh <[email protected]> Co-authored-by: Sigbjørn Skjæret <[email protected]>
shalinib-ibm
pushed a commit
that referenced
this pull request
Jan 14, 2026
* FlashAttention (#13) * Add inplace softmax * Move rms_norm to split row approach * Update debug for supports_op * clean up debug statements * neg f16xf32xip builds and runs, havent actually ran a model that uses neg kernel yet though * neg passes backend test * unary operators pass ggml tests * rms_norm double declaration bug atoned * abides by editor-config * removed vestigial files * fixed autoconfig * All operators (inlcluding xielu) working * removed unnecesarry checking if node->src[1] exists for unary operators * responded and dealt with PR comments * implemented REPL_Template support and removed bug in unary operators kernel * formatted embed wgsl and ggml-webgpu.cpp * Faster tensors (#8) Add fast matrix and matrix/vector multiplication. * Use map for shader replacements instead of pair of strings * Wasm (#9) * webgpu : fix build on emscripten * more debugging stuff * test-backend-ops: force single thread on wasm * fix single-thread case for init_tensor_uniform * use jspi * add pthread * test: remember to set n_thread for cpu backend * Add buffer label and enable dawn-specific toggles to turn off some checks * Intermediate state * Fast working f16/f32 vec4 * Working float fast mul mat * Clean up naming of mul_mat to match logical model, start work on q mul_mat * Setup for subgroup matrix mat mul * Basic working subgroup matrix * Working subgroup matrix tiling * Handle weirder sg matrix sizes (but still % sg matrix size) * Working start to gemv * working f16 accumulation with shared memory staging * Print out available subgroup matrix configurations * Vectorize dst stores for sg matrix shader * Gemv working scalar * Minor set_rows optimization (#4) * updated optimization, fixed errors * non vectorized version now dispatches one thread per element * Simplify * Change logic for set_rows pipelines --------- Co-authored-by: Neha Abbas <[email protected]> Co-authored-by: Neha Abbas <[email protected]> Co-authored-by: Reese Levine <[email protected]> * Comment on dawn toggles * Working subgroup matrix code for (semi)generic sizes * Remove some comments * Cleanup code * Update dawn version and move to portable subgroup size * Try to fix new dawn release * Update subgroup size comment * Only check for subgroup matrix configs if they are supported * Add toggles for subgroup matrix/f16 support on nvidia+vulkan * Make row/col naming consistent * Refactor shared memory loading * Move sg matrix stores to correct file * Working q4_0 * Formatting * Work with emscripten builds * Fix test-backend-ops emscripten for f16/quantized types * Use emscripten memory64 to support get_memory * Add build flags and try ci --------- Co-authored-by: Xuan Son Nguyen <[email protected]> * Remove extra whitespace * Move wasm single-thread logic out of test-backend-ops for cpu backend * Disable multiple threads for emscripten single-thread builds in ggml_graph_plan * Refactored pipelines and workgroup calculations (#10) * refactored pipelines * refactored workgroup calculation * removed commented out block of prior maps * Clean up ceiling division pattern --------- Co-authored-by: Neha Abbas <[email protected]> Co-authored-by: Reese Levine <[email protected]> * Start work on flash attention * Shader structure set up (many bugs still) * debugging * Working first test * Working with head grouping, head sizes to 128, logit softcap, mask/sinks enabled, f32 * Generalize softmax to work with multiple subgroups, f16 accumulation, mask shared memory tiling * Start work on integrating pre-wgsl * Separate structs/initial shader compilation library into separate files * Work on compilation choices for flashattention * Work on subgroup matrix/tile size portability * subgroup size agnostic online softmax * Cleanups, quantization types * more cleanup * fix wasm build * Refactor flashattention to increase parallelism, use direct loads for KV in somce cases * Checkpoint * formatting * Update to account for default kv cache padding * formatting shader * Add workflow for ggml-ci webgpu * Try passing absolute path to dawn in ggml-ci * Avoid error on device destruction, add todos for proper cleanup * Fix unused warning * Forgot one parameter unused * Move some flashattn computation to f32 for correctness
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
In class tinyBLAS_PPC, previously, packing of input matrices A and B was performed on-the-fly within each GEMM microkernel. This patch refactors the code to decouple packing from kernel by introducing a preprocessing step that packs matrices once before any kernel is invoked.
Make sure to read the contributing guidelines before submitting a PR