Skip to content

shaqb/jira-sprint-analysis

Repository files navigation

Jira Sprint Analysis Tool

A Python-based tool for analyzing Jira sprint data, comparing original estimates against AI-generated estimates and actual time spent across different disciplines (BA, BE, FE, TA, QA).

Features

  • Interactive web interface using Streamlit
  • Processes Jira export data to analyze estimation accuracy
  • Compares original estimates, AI-generated estimates, and actual time spent
  • Breaks down analysis by discipline (BA, BE, FE, TA, QA)
  • Calculates estimation improvements:
    • Original vs Actual deviation percentage
    • AI vs Actual deviation percentage
    • Overall estimation improvement percentage
  • Generates detailed Excel report with:
    • Summary Dashboard
    • Analysis Results
    • Data Visualizations
  • Creates interactive visualizations for estimate comparisons
  • Handles missing data gracefully with detailed reporting

Quick Start

  1. Clone the repository:
git clone <repository-url>
cd halfords-jira-sprint-analysis
  1. Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows, use: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt
  1. Run the Streamlit app:
streamlit run app.py
  1. Upload your Jira export Excel file through the web interface or place it in the input directory.

Project Structure

halfords-jira-sprint-analysis/
├── jira_analysis/           # Main package directory
│   ├── __init__.py         # Package initialization
│   ├── analyzer.py         # Core analysis functionality
│   ├── visualization.py    # Plotting and Excel formatting
│   └── utils.py           # Utility functions
├── tests/                  # Test directory
│   ├── __init__.py
│   ├── test_analyzer.py
│   ├── test_visualization.py
│   └── test_utils.py
├── input/                  # Place Jira export files here
├── output/                # Generated reports appear here
├── app.py                 # Streamlit web application
├── requirements.txt       # Production dependencies
├── requirements-dev.txt   # Development dependencies
├── setup.py              # Package setup file
├── pyproject.toml        # Build system requirements
├── tox.ini              # Tox configuration
└── README.md

Development

  1. Install development dependencies:
pip install -r requirements-dev.txt
  1. Install the package in development mode:
pip install -e .
  1. Run tests:
python -m pytest

Input File Format

The tool expects a Jira export Excel file with the following columns:

  • Key: Jira ticket key
  • For each discipline (QA, TA, FE, BA, BE):
    • Original Estimate based on old way
    • Revised Estimate based on AI
    • Actual Time based on AI

Output

The tool generates:

  1. Interactive web interface with:
    • Data preview
    • Analysis results
    • Interactive visualizations
  2. Excel report containing:
    • Summary statistics
    • Detailed analysis by discipline
    • Visualizations
    • Data quality metrics

Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages