A Python-based tool for analyzing Jira sprint data, comparing original estimates against AI-generated estimates and actual time spent across different disciplines (BA, BE, FE, TA, QA).
- Interactive web interface using Streamlit
- Processes Jira export data to analyze estimation accuracy
- Compares original estimates, AI-generated estimates, and actual time spent
- Breaks down analysis by discipline (BA, BE, FE, TA, QA)
- Calculates estimation improvements:
- Original vs Actual deviation percentage
- AI vs Actual deviation percentage
- Overall estimation improvement percentage
- Generates detailed Excel report with:
- Summary Dashboard
- Analysis Results
- Data Visualizations
- Creates interactive visualizations for estimate comparisons
- Handles missing data gracefully with detailed reporting
- Clone the repository:
git clone <repository-url>
cd halfords-jira-sprint-analysis
- Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows, use: venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
- Run the Streamlit app:
streamlit run app.py
- Upload your Jira export Excel file through the web interface or place it in the
input
directory.
halfords-jira-sprint-analysis/
├── jira_analysis/ # Main package directory
│ ├── __init__.py # Package initialization
│ ├── analyzer.py # Core analysis functionality
│ ├── visualization.py # Plotting and Excel formatting
│ └── utils.py # Utility functions
├── tests/ # Test directory
│ ├── __init__.py
│ ├── test_analyzer.py
│ ├── test_visualization.py
│ └── test_utils.py
├── input/ # Place Jira export files here
├── output/ # Generated reports appear here
├── app.py # Streamlit web application
├── requirements.txt # Production dependencies
├── requirements-dev.txt # Development dependencies
├── setup.py # Package setup file
├── pyproject.toml # Build system requirements
├── tox.ini # Tox configuration
└── README.md
- Install development dependencies:
pip install -r requirements-dev.txt
- Install the package in development mode:
pip install -e .
- Run tests:
python -m pytest
The tool expects a Jira export Excel file with the following columns:
- Key: Jira ticket key
- For each discipline (QA, TA, FE, BA, BE):
- Original Estimate based on old way
- Revised Estimate based on AI
- Actual Time based on AI
The tool generates:
- Interactive web interface with:
- Data preview
- Analysis results
- Interactive visualizations
- Excel report containing:
- Summary statistics
- Detailed analysis by discipline
- Visualizations
- Data quality metrics
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add some amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.