Code Explorer is a powerful Python code analyzer and dependency analysis tool with persistent graph storage using KuzuDB. Designed for developers who need to understand complex codebases, track dependencies, and perform impact analysis efficiently.
Code Explorer is the best Python code analyzer for understanding large codebases. It builds a persistent dependency graph by analyzing Python files to track functions, classes, variables, and their relationships (calls, imports, inheritance). This free Python code analyzer enables sophisticated impact analysis and code navigation through graph-based queries.
Key Capabilities:
- 🔍 Dependency Tracking - Map all function calls, imports, and class relationships
- 📊 Impact Analysis - Identify code affected by changes before refactoring
- 🗺️ Code Visualization - Generate Mermaid diagrams of dependencies
- ⚡ Fast Queries - Sub-second graph database queries
- 💾 Incremental Updates - Only re-analyze changed files (10-100x faster)
- 🎯 AST-Based - Accurate static code analysis without execution
Code Explorer excels at analyzing complex Python codebases where understanding dependencies is critical:
✅ Enterprise-Grade Performance - Analyze 10,000+ file codebases in minutes ✅ Graph Database Backend - KuzuDB provides lightning-fast relationship queries ✅ Comprehensive Analysis - Functions, classes, imports, decorators, variables, exceptions ✅ Persistent Storage - Results saved to disk for instant reuse ✅ Command-Line First - Perfect for CI/CD integration and automation
| Feature | Code Explorer | pylint/flake8 | IDE Navigation |
|---|---|---|---|
| Relationship Analysis | ✅ Graph-based | ❌ Syntax only | |
| Impact Analysis | ✅ Multi-level | ❌ None | |
| Visualization | ✅ Diagrams | ❌ Text only | ❌ None |
| Persistent Storage | ✅ Database | ❌ None | ❌ None |
| CI/CD Integration | ✅ CLI-first | ❌ Not designed |
The best free Python code analyzer is just a pip install away:
# Install from source
pip install -e .
# Or install from PyPI (when published)
pip install code-explorerRequirements:
- Python 3.8 or higher
- Dependencies: click, rich, astroid, kuzu, pandas
Step 1: Analyze Your Codebase
# Analyze current directory
code-explorer analyze .
# Analyze specific directory
code-explorer analyze ./src
# Include normally excluded directories
code-explorer analyze . --include .venvExample Output:
Analyzing codebase at: /path/to/project
Database location: .code-explorer/graph.db
Excluding: __pycache__, .pytest_cache, dist, build, .git
✓ 234 files analyzed
✓ 1,523 functions inserted
✓ 287 classes inserted
✓ 892 variables inserted
✓ 2,145 import relationships
✓ 8,734 function call edges
Total analysis time: 12.3s
Step 2: View Codebase Statistics
code-explorer statsOutput shows:
- Total files, classes, functions, variables
- Most-called functions (complexity hotspots)
- Import statistics
- Decorator usage
- Exception handling patterns
Step 3: Find Impact of Changes
Before refactoring any function, use this dependency analysis guide:
# Find who calls this function (upstream dependencies)
code-explorer impact src/module.py:my_function
# Find what this function calls (downstream dependencies)
code-explorer impact src/module.py:my_function --downstream
# Limit search depth for focused analysis
code-explorer impact src/module.py:my_function --max-depth 3Step 4: Trace Variable Data Flow
Debug issues by tracking variable usage:
# Find where a variable is used across functions
code-explorer trace src/module.py:42 --variable user_input
# Track data flow through the application
code-explorer trace src/processor.py:15 --variable resultStep 5: Visualize Dependencies
Generate beautiful dependency graphs:
# Create Mermaid diagram for a module
code-explorer visualize src/module.py --output graph.md
# Focus on specific function with depth limit
code-explorer visualize src/utils.py --function calculate --max-depth 2
# View in GitHub, VS Code, or any Mermaid-compatible viewerSecond and subsequent runs are dramatically faster:
# Only analyzes changed files (10-100x faster)
code-explorer analyze ./src
# Force complete re-analysis when needed
code-explorer analyze ./src --refreshHow it works:
- File content hashes are stored in the database
- Unchanged files are automatically skipped
- Only modified files are re-analyzed
- Perfect for development workflow and CI/CD
For projects with 10,000+ files or including virtual environments:
# Use chunked processing for memory efficiency
code-explorer analyze . --include .venv --chunk-size 25
# Increase parallel workers for faster processing
code-explorer analyze . --workers 16
# For very low RAM systems
code-explorer analyze . --chunk-size 10Manage database size by controlling source code storage:
# Store full source code (default, larger database)
code-explorer analyze ./src
# Don't store source code (smaller database, faster)
code-explorer analyze ./src --no-source
# Store only first 10 lines (preview mode)
code-explorer analyze ./src --source-lines 10Start fresh analysis from scratch:
# Delete the database directory
rm -rf .code-explorer/
# Or use refresh flag
code-explorer analyze ./src --refreshUse custom database paths for multiple projects or specific locations:
# Specify custom database path
code-explorer analyze ./src --db-path /path/to/custom/db
# All subsequent commands must use the same path
code-explorer stats --db-path /path/to/custom/db
code-explorer impact src/module.py:func --db-path /path/to/custom/dbPrevent accidental modifications:
# The KuzuDB Explorer runs in read-only mode by default
docker compose up -d
# Open http://localhost:8000
# Run Cypher queries safely without risking data corruptionIdentify code that needs refactoring:
# Show top 20 most-called functions
code-explorer stats --top 20
# These are complexity hotspots - refactoring candidatesAdd dependency analysis to your continuous integration:
#!/bin/bash
# .github/workflows/analyze.sh
# Analyze codebase
code-explorer analyze . --refresh
# Generate complexity report
code-explorer stats --top 50 > complexity-report.txt
# Fail build if critical functions are too complex
# (add custom logic based on your thresholds)Track down data flow issues:
# Start at the error line
code-explorer trace src/app.py:error_line --variable suspicious_var
# Follow the trail backwards to find the source
code-explorer trace src/input.py:45 --variable user_dataAnalyzes Python files and builds the dependency graph.
Options:
--exclude PATTERN- Exclude files/directories (can specify multiple times)--include PATTERN- Override default exclusions (e.g.,--include .venv)--workers N- Number of parallel workers (default: 4)--db-path PATH- Custom database location (default:.code-explorer/graph.db)--refresh- Force complete re-analysis (ignore cache)--chunk-size N- Files per chunk for edge insertion (default: 25, lower = less RAM)--no-source- Don't store function/class source code--source-lines N- Store only first N lines of source
Examples:
# Basic analysis
code-explorer analyze ./src
# Complex project with multiple exclusions
code-explorer analyze . --exclude tests --exclude docs --workers 8
# Analyze everything including virtual environment
code-explorer analyze . --include .venv --include venv
# Low memory system
code-explorer analyze . --chunk-size 10Shows comprehensive graph statistics.
Options:
--top N- Show top N most-connected functions (default: 10)--db-path PATH- Custom database location
Examples:
# Basic statistics
code-explorer stats
# Show top 25 most-called functions
code-explorer stats --top 25Finds function dependencies and impact analysis.
Options:
--downstream- Show what function calls (default: upstream/callers)--max-depth N- Limit traversal depth (default: 5)--db-path PATH- Custom database location
Examples:
# Find who calls this function
code-explorer impact services/auth.py:validate_user
# Find what this function calls
code-explorer impact utils/helpers.py:process_data --downstream
# Shallow search for immediate dependencies
code-explorer impact main.py:run --max-depth 2Traces variable data flow through the codebase.
Options:
--variable NAME- Variable name to trace (required)--db-path PATH- Custom database location
Examples:
# Trace user input flow
code-explorer trace app.py:45 --variable user_data
# Track result variable through functions
code-explorer trace processor.py:120 --variable resultGenerates Mermaid dependency diagrams.
Options:
--function NAME- Highlight specific function--output PATH- Output file path (default: graph.md)--max-depth N- Limit diagram depth (default: 3)--db-path PATH- Custom database location
Examples:
# Visualize entire module
code-explorer visualize services/auth.py --output auth_graph.md
# Focus on specific function with depth control
code-explorer visualize utils.py --function calculate --max-depth 2Node Types:
-
File - Python source files
path(STRING) - Relative file pathcontent_hash(STRING) - SHA-256 hash for change detectionlast_modified(TIMESTAMP) - Last modification time
-
Function - Functions and methods
id(STRING) - Hash-based ID (fn_*)name(STRING) - Function namefile(STRING) - Relative file pathstart_line,end_line(INT64) - Location in sourceis_public(BOOLEAN) - Public/private visibilitysource_code(STRING, optional) - Function source code
-
Class - Class definitions
id(STRING) - Hash-based ID (cls_*)name(STRING) - Class namefile(STRING) - Relative file pathstart_line,end_line(INT64) - Location in sourcebases(STRING) - JSON array of base classesis_public(BOOLEAN) - Public/private visibilitysource_code(STRING, optional) - Class source code
-
Variable - Variable definitions
id(STRING) - Hash-based ID (var_*)name(STRING) - Variable namefile(STRING) - Relative file pathdefinition_line(INT64) - Where definedscope(STRING) - module, class, or function
-
Import - Import statements
id(STRING) - Hash-based ID (imp_*)imported_name(STRING) - What was importedimport_type(STRING) - import or from-importalias(STRING) - Import alias if anyline_number(INT64) - Location in source
-
Decorator - Decorator applications
id(STRING) - Hash-based ID (dec_*)name(STRING) - Decorator namefile(STRING) - Relative file pathline_number(INT64) - Location in sourcearguments(JSON) - Decorator arguments
Edge Types:
CONTAINS_FUNCTION- File contains FunctionCONTAINS_CLASS- File contains ClassCONTAINS_VARIABLE- File contains VariableCALLS- Function calls FunctionMETHOD_OF- Function is method of ClassINHERITS- Class inherits from ClassHAS_IMPORT- File has ImportUSES- Function uses VariableHAS_ATTRIBUTE- Class has AttributeDECORATED_BY- Function/Class decorated by Decorator
CODE_EXPLORER_DEBUG
Enable detailed debug logging:
# Show verbose logging for troubleshooting
CODE_EXPLORER_DEBUG=1 code-explorer analyze .Traditional Python code analyzer tools re-parse the entire codebase on every run. Code Explorer uses KuzuDB for persistent graph storage, providing:
Incremental Updates - Only re-analyze changed files (10-100x faster for large codebases) Complex Queries - Cypher-like graph queries for sophisticated dependency analysis Interactive Exploration - Web UI for visual graph navigation ACID Transactions - Reliable, consistent persistence
The dependency analysis tool intelligently tracks changes:
- Each file has a SHA-256 content hash stored in the database
- On re-analysis, current file hash is compared with stored hash
- Unchanged files are skipped entirely (zero parsing overhead)
- Changed files have their old nodes/edges deleted and are re-analyzed
- New files are added to the graph seamlessly
This makes the second and subsequent runs dramatically faster, perfect for development workflow.
Code Explorer uses both for comprehensive Python code analysis:
ast (Python stdlib)
- Fast parsing and structure extraction
- Functions, classes, imports, calls
- Reliable and stable
astroid (third-party)
- Semantic analysis and name resolution
- Type inference capabilities
- Better cross-file understanding
This combination provides accurate dependency tracking without requiring code execution.
KuzuDB (embedded graph database) provides:
Cypher Query Language - Powerful graph traversal for complex analysis ACID Transactions - Reliable data persistence Embedded Architecture - No separate server needed High Performance - Optimized for relationship queries Perfect Fit - Code dependencies are naturally a graph structure
Code Explorer analyzes static code structure. Be aware of limitations:
❌ Dynamic imports - importlib or __import__() not tracked
❌ Dynamic calls - getattr() or eval() not resolved
❌ Type inference - Limited to static analysis capabilities
❌ Monkey patching - Runtime modifications not detected
❌ Generated code - Metaprogramming not fully analyzed
For runtime behavior analysis, complement Code Explorer with profiling tools.
1. Run analysis regularly - Integrate into your development workflow 2. Use exclusions wisely - Skip test files and vendor code 3. Check impact before refactoring - Always run impact analysis first 4. Visualize complex areas - Use diagrams for complicated dependencies 5. Monitor statistics - Track code complexity over time 6. Leverage incremental updates - Fast re-analysis in development 7. Integrate with CI/CD - Automated dependency tracking
# Step 1: Find all usages before making changes
code-explorer impact old_module.py:legacy_function --max-depth 10
# Step 2: Visualize the impact scope
code-explorer visualize old_module.py --function legacy_function
# Step 3: Make changes confidently knowing the full impact
# Step 4: Re-analyze to verify changes
code-explorer analyze . --refresh# New team member can quickly understand codebase structure
code-explorer stats
code-explorer visualize main.py --function main --max-depth 5
# Explore specific areas of interest
code-explorer impact services/core.py:main_handler# Trace where problematic data originates
code-explorer trace app.py:error_line --variable suspicious_input
# Find all functions that touch this problematic code
code-explorer impact utils.py:buggy_function --downstream# In your CI pipeline
code-explorer analyze . --refresh
code-explorer stats --top 100 > complexity-report.txt
# Fail build if complexity threshold exceeded
# Track dependency metrics over timeFor enterprise-scale projects:
# Maximum parallelization
code-explorer analyze . --workers 32 --chunk-size 15
# Analyze incrementally by directory
code-explorer analyze ./src --db-path ./analysis/db
code-explorer analyze ./lib --db-path ./analysis/db
code-explorer analyze ./tests --db-path ./analysis/dbControl memory usage for large analyses:
# Reduce chunk size (uses less RAM but slower)
code-explorer analyze . --chunk-size 10
# Disable source code storage (smaller database)
code-explorer analyze . --no-source
# Process in stages
code-explorer analyze ./src # First pass
code-explorer analyze ./lib # Second passUsing the web UI for advanced queries:
// Find most complex functions (high fan-in)
MATCH (caller:Function)-[:CALLS]->(callee:Function)
RETURN callee.name, COUNT(caller) as call_count
ORDER BY call_count DESC
LIMIT 20;
// Find circular dependencies
MATCH path = (f:Function)-[:CALLS*]->(f)
RETURN path;
// Find orphaned functions (never called)
MATCH (f:Function)
WHERE NOT (:Function)-[:CALLS]->(f)
RETURN f.name, f.file;- Python 3.8 or higher
- Dependencies: click, rich, astroid, kuzu, pandas
- Docker (optional, for KuzuDB Explorer web UI)
- 4GB+ RAM recommended for large codebases
- Disk space: ~100MB per 1000 files analyzed (with source code)
Contributions welcome! This free Python code analyzer benefits from community input:
- Report Bugs - Open GitHub issues with details
- Suggest Features - Share ideas for improvements
- Submit Pull Requests - Fork, branch, code, test, submit
- Improve Documentation - Help others understand the tool
- Share Use Cases - Tell us how you use Code Explorer
MIT License - Free for personal and commercial use.
Experience the best Python code analyzer for dependency analysis:
# Install
pip install -e .
# Analyze your first project
cd /path/to/your/python/project
code-explorer analyze .
# Explore the results
code-explorer stats
code-explorer impact main.py:main
code-explorer visualize main.py --output deps.mdStart understanding your Python codebase better with this powerful dependency analysis tool!
Keywords: python code analyzer, dependency analysis tool, code graph database, python static analysis, codebase visualization, impact analysis, dependency tracker, code relationship mapping, python code exploration, software architecture analysis, best python code analyzer, free python code analyzer, python code analyzer tutorial, dependency analysis guide, code analyzer comparison