Skip to content

stanford-action-recognition/ar

Folders and files

NameName
Last commit message
Last commit date

Latest commit

1cc1495 · Jun 4, 2021
May 29, 2021
Jun 3, 2021
May 11, 2021
May 31, 2021
Jun 3, 2021
May 31, 2021
Jun 3, 2021
Jun 3, 2021
Jun 3, 2021
May 30, 2021
May 8, 2021
Jun 3, 2021
May 31, 2021
May 31, 2021
Jun 3, 2021
May 9, 2021
Jun 3, 2021

Repository files navigation

Action Recognition

Setup

  1. Download HMDB51 dataset

    wget http://ftp.tugraz.at/pub/feichtenhofer/tsfusion/data/hmdb51_jpegs_256.zip
    wget http://ftp.tugraz.at/pub/feichtenhofer/tsfusion/data/hmdb51_tvl1_flow.zip
    
    mv hmdb51_jpegs_256.zip ar/data
    mv hmdb51_tvl1_flow.zip ar/data
    
    cd ar/data
    
    unzip hmdb51_jpegs_256.zip
    unzip hmdb51_tvl1_flow.zip
  2. Install requriements:

     conda create --name ar python=3.7
     conda activate ar
     conda install opencv

Train

RGB

python rgb_train.py

Flow

python motion_train.py

Two Stream

python multi_stream_train.py --streams=rgb,flow
  • If use pretrained model and want to freeze the parameters of the pretrained models, run

    python multi_stream_train.py --streams=rgb,flow --use_pretrained=True --freeze_stream_models=True

    If use pretrained model without freezing the parameters, note that the new models will replace the pretrained models after training.

  • multi_stream_add.py is for summing predictions from the pretrained models of all streams, run

    python multi_stream_add.py --streams=rgb,flow --use_pretrained=True --freeze_stream_models=True

    This program will print train / val acc.

References

The code is borrowed from or inspired by:

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages