langchain-tensorlake
provides seamless integration between Tensorlake and LangChain, enabling you to build sophisticated document processing agents with structured extraction workflows.
pip install -U langchain-tensorlake
You should configure credentials for Tensorlake and OpenAI by setting the following environment variables:
export TENSORLAKE_API_KEY="your-tensorlake-api-key"
export OPENAI_API_KEY = "your-openai-api-key"
Get your Tensorlake API key from the Tensorlake Cloud Console. New users get 100 free credits!
from langchain_tensorlake import DocumentParserOptions, document_markdown_tool
from langgraph.prebuilt import create_react_agent
import asyncio
import os
async def main(question):
# Create the agent with the Tensorlake tool
agent = create_react_agent(
model="openai:gpt-4o-mini",
tools=[document_markdown_tool],
prompt=(
"""
I have a document that needs to be parsed. \n\nPlease parse this document and answer the question about it.
"""
),
name="real-estate-agent",
)
# Run the agent
result = await agent.ainvoke({"messages": [{"role": "user", "content": question}]})
# Print the result
print(result["messages"][-1].content)
# Define the path to the document to be parsed
path = "path/to/your/document.pdf"
# Define the question to be asked and create the agent
question = f"What contextual information can you extract about the signatures in my document found at {path}?"
if __name__ == "__main__":
asyncio.run(main(question))
You can configure how documents are parsed using DocumentParserOptions, such as:
chunking_strategy
: fragment, page, or sectiondetect_tables
: enable or disable table extractiondetect_signatures
: flag signature pages