| Sergei Agaronian, Theodoor Akkerboom, Maarten Drinhuyzen, Wenkai Pan, Marius Strampel
This repository is made for the Deep Learning 2 course at the Universiteit van Amsterdam. With this project, a Socratic Model is made to predict the answer of the Raven Progressive Matrices (RPM) - a visual IQ Test.
- Create the environment from the socrat.yml file:
conda env create -f socrat.yml
- Activate the environment:
conda activate socrat
- Run the main file:
python main.py
--name NAME How to name the results.
--seed SEED Seed to use for reproducing results.
--data_dir DATA_DIR Data directory where to find dataset.
--split SPLIT Data split to use.
--type TYPE Puzzle type to use.
--ClassicOpenCV CLASSICOPENCV Use OpenCV or not
--vlm VLM VLM weights to use.
--lm LM LM weights to use.
.
|
|-- center_single subset # A subset of the RAVEN dataset for demos
|
|-- demos # Interactive notebooks showcasing the models
| |-- Experiment1and2.ipynb
| |-- experiment_3.ipynb
|
|-- output # Output of the experiments
|
|-- src # Source code of the pipeline
| |-- const.py
| |-- dataset.py
| |-- model.py
|
|-- README.md # Description of the repo with relevant getting started info (used dependencies/conda envs)
|
|-- blogpost.md # Blogpost style report
|
|-- lisa.job # Job file for LISA cluster
|
|-- main.py # Script to run the whole pipeline
|
|-- socrat.yml # Environment