Skip to content

tiagogomes772/Deep-Learning-in-Visual-Recognition-and-Planning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 

Repository files navigation

Deep-Learning-in-Visual-Recognition-and-Planning

Install requirements:

Install bazel and tensorflow ( check tensorflow's github for more info )

If you have Ubuntu 14.04

Run the following commands

sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java8-installer
-chmod +x PATH_TO_INSTALL.SH
- ./PATH_TO_INSTALL.SH --user
  • Place bazel onto path ( exact path to store shown in the output)

How to retrain the imagenet from tensorflow

  • For retraining, prepare folder structure as
    • root_folder_name
      • class 1
        • file1
        • file2
      • class 2
        • file1
        • file2
  • Clone tensorflow
  • Go to root of tensorflow
sudo bazel build tensorflow/examples/image_retraining:retrain
sudo bazel-bin/tensorflow/examples/image_retraining/retrain --image_dir /path/to/root_folder_name  --output_graph /path/output_graph.pb --output_labels /path/output_labels.txt --bottleneck_dir /path/bottleneck

Train done passing for test

How to test it:

Run file evaluate_image.py

Cut videos in frames

You must install ffmpeg for this

ffmpeg -i video.mp4 -r 5 image%03d.jpg

If you need more frames increase the number followed by the flag -r

##Run with kinect 2

roslaunch kinect2_bridge kinect2_bridge.launch

Run evaluate images to get images and save them

In ros directory

 source devel/setup.bash

Then run

rosrun kinect_images save_image.py 

About

Deep Learning in Visual Recognition and Planning using tensorflow

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages