Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions GNNs/PyG/gcn_link_prediction.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -672,7 +672,7 @@
"train_edge_neighbor_loader = conn.gds.edgeNeighborLoader(\n",
" v_in_feats=[\"x\"],\n",
" v_out_labels=[\"y\"],\n",
" num_batches=5,\n",
" batch_size=1000,\n",
" e_extra_feats=[\"is_train\",\"is_val\"],\n",
" output_format=\"PyG\",\n",
" num_neighbors=10,\n",
Expand All @@ -692,7 +692,7 @@
"val_edge_neighbor_loader = conn.gds.edgeNeighborLoader(\n",
" v_in_feats=[\"x\"],\n",
" v_out_labels=[\"y\"],\n",
" num_batches=5,\n",
" batch_size=500,\n",
" e_extra_feats=[\"is_train\",\"is_val\"],\n",
" output_format=\"PyG\",\n",
" num_neighbors=10,\n",
Expand Down
20 changes: 10 additions & 10 deletions applications/nodepiece/nodepiece.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -368,12 +368,12 @@
"source": [
"import time\n",
"import numpy as np\n",
"from pyTigerGraph.gds.metrics import Accuracy\n",
"from pyTigerGraph.gds.metrics import Accuracy, Accumulator\n",
"\n",
"\n",
"for i in range(10):\n",
" acc = Accuracy()\n",
" epoch_loss = 0\n",
" epoch_loss = Accumulator()\n",
" start = time.time()\n",
" for batch in np_loader:\n",
" labels = batch[\"y\"]\n",
Expand All @@ -383,21 +383,21 @@
" optimizer.zero_grad()\n",
" loss_val.backward()\n",
" optimizer.step()\n",
" epoch_loss += loss_val.item()\n",
" epoch_loss.update(loss_val.item())\n",
" end = time.time()\n",
" val_acc = Accuracy()\n",
" val_epoch_loss = 0\n",
" val_epoch_loss = Accumulator()\n",
" for val_batch in valid_loader:\n",
" with torch.no_grad():\n",
" labels = val_batch[\"y\"]\n",
" out = model(val_batch)\n",
" loss_val = loss(out, labels)\n",
" val_acc.update(out.argmax(dim=1), labels)\n",
" val_epoch_loss += loss_val.item()\n",
" print(\"EPOCH {}: {}\".format(i, epoch_loss/np_loader.num_batches), \n",
" val_epoch_loss.update(loss_val.item())\n",
" print(\"EPOCH {}: {}\".format(i, epoch_loss.mean), \n",
" \"Train Accuracy:\", acc.value, \n",
" \"Time:\", end-start, \n",
" \"Valid Loss: {}\".format(val_epoch_loss/valid_loader.num_batches), \n",
" \"Valid Loss: {}\".format(val_epoch_loss.mean), \n",
" \"Valid Accuracy:\", val_acc.value)"
]
},
Expand Down Expand Up @@ -448,17 +448,17 @@
"source": [
"acc = Accuracy()\n",
"\n",
"epoch_loss = 0\n",
"epoch_loss = Accumulator()\n",
"start = time.time()\n",
"model.eval()\n",
"for batch in test_loader:\n",
" labels = batch[\"y\"]\n",
" out = model(batch)\n",
" loss_val = loss(out, labels)\n",
" acc.update(out.argmax(dim=1), labels)\n",
" epoch_loss += loss_val.item()\n",
" epoch_loss.update(loss_val.item())\n",
"end = time.time()\n",
"print(\"Loss: {}, Accuracy: {}\".format(epoch_loss/test_loader.num_batches, acc.value), \"Time:\", end-start)"
"print(\"Loss: {}, Accuracy: {}\".format(epoch_loss.mean, acc.value), \"Time:\", end-start)"
]
},
{
Expand Down