Skip to content

toniesteves/heuristic-algorithms

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

7 Commits
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Heuristic Algorithms

This repository contains implementations of various heuristic algorithms to solve combinatorial and continuous optimization problems. These algorithms are useful for finding approximate solutions in problems where exact methods are infeasible due to high computational costs.

πŸ“Œ Implemented Algorithms

  • A Star Search
  • Simulated Annealing
  • Genetic Algorithm
  • Ant Colony Optimization (ACO)
  • Particle Swarm Optimization (PSO)
  • Tabu Search

πŸ“‚ Repository Structure

heuristic-algorithms/
│── algorithms/
β”‚   │── simulated_annealing.py
β”‚   │── genetic_algorithm.py
β”‚   │── ant_colony.py
β”‚   │── particle_swarm.py
β”‚   │── tabu_search.py
│── examples/
β”‚   │── tsp_example.py
β”‚   │── knapsack_example.py
│── README.md
│── requirements.txt
│── main.py

πŸš€ How to Use

  1. Clone the repository:

    git clone https://github.com/your-username/heuristic-algorithms.git
    cd heuristic-algorithms
  2. Install dependencies:

    pip install -r requirements.txt
  3. Run an example:

    python examples/tsp_example.py

πŸ›  Dependencies

  • Python 3.8+
  • NumPy
  • SciPy
  • Matplotlib (for visualization, optional)

πŸ“– References

  • "Metaheuristics: From Design to Implementation" - El-Ghazali Talbi
  • "An Introduction to Metaheuristics for Optimization" - Bastien Chopard Β· Marco Tomassini

πŸ“œ License

This project is licensed under the MIT License - see the LICENSE file for details.


If you liked this repository, don't forget to leave a ⭐ and contribute with improvements! πŸš€

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages