IBench is a comprehensive framework for evaluating image generation quality and image-text alignment. It provides multiple metrics across different evaluation dimensions.
- FID Score: Evaluates the fidelity and diversity of generated images.
- Aesthetic Score: Measures image aesthetic quality using the LAION aesthetic model.
- Imaging Quality: Analyzes technical image quality using the MUSIQ model.
- Face Similarity: Measures facial similarity using InsightFace.
- CLIP Evaluation: Assesses semantic similarity between images using CLIP.
- DINO Evaluation: Analyzes visual features using DINOv2.
- DreamSim Evaluation: Assesses dream-like quality.
- Pose Diversity: Analyzes head pose variations using Hopenet.
- Expression Diversity: Evaluates facial expression variations.
- GPT-4V Integration: Scores image-text alignment.
- Configurable evaluation parameters.
- JSON-formatted analysis output.
The framework uses YAML configuration for model paths and parameters:
metrics:
t2i:
fid:
fid_inception_model_path: "/path/to/inception/model"
aesthetic:
laion_aes_model_path: "/path/to/laion/model"
imageid:
facesim:
face_detection_model_path: "/path/to/insightface"
clipeval:
clip_model_path: "/path/to/clip"
dinoeval:
dino_model_path: "/path/to/dino"
dreamsimeval:
dreamsim_model_path: "/path/to/dreamsim"
posediv:
hopenet_model_path: "/path/to/hopenet"
yaw_threshold: 45
pitch_threshold: 20
roll_threshold: 25
exprdiv:
expression_model_path: "/path/to/expression"
mllm:
gpt_proxy_url: "http://proxy.url:port"
temperature: 0.02
max_tokens: 250
top_p: 1
frequency_penalty: 0
presence_penalty: 0
enable_timing_stats: True
save_results: "/path/to/results"- Install dependencies.
- Configure model paths in
config/config.yaml. - Run evaluation:
python IbenchMain.py- Modular architecture for easy metric addition.
- YAML-based configuration.
- Support for batch processing.
- Detailed scoring and analysis.
- Progress tracking with
tqdm.
- Python 3.7+
- OpenAI API key for GPT-4V evaluation.
- Pre-trained models (CLIP, DINOv2, etc.).