Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes
Original file line number Diff line number Diff line change
@@ -1,94 +1,94 @@
import matplotlib.pyplot as plt
import numpy as np
from torch import nn, optim
from torch.autograd import Variable
def test_network(net, trainloader):
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
dataiter = iter(trainloader)
images, labels = dataiter.next()
# Create Variables for the inputs and targets
inputs = Variable(images)
targets = Variable(images)
# Clear the gradients from all Variables
optimizer.zero_grad()
# Forward pass, then backward pass, then update weights
output = net.forward(inputs)
loss = criterion(output, targets)
loss.backward()
optimizer.step()
return True
def imshow(image, ax=None, title=None, normalize=True):
"""Imshow for Tensor."""
if ax is None:
fig, ax = plt.subplots()
image = image.numpy().transpose((1, 2, 0))
if normalize:
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image = std * image + mean
image = np.clip(image, 0, 1)
ax.imshow(image)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.tick_params(axis='both', length=0)
ax.set_xticklabels('')
ax.set_yticklabels('')
return ax
def view_recon(img, recon):
''' Function for displaying an image (as a PyTorch Tensor) and its
reconstruction also a PyTorch Tensor
'''
fig, axes = plt.subplots(ncols=2, sharex=True, sharey=True)
axes[0].imshow(img.numpy().squeeze())
axes[1].imshow(recon.data.numpy().squeeze())
for ax in axes:
ax.axis('off')
ax.set_adjustable('box-forced')
def view_classify(img, ps, version="MNIST"):
''' Function for viewing an image and it's predicted classes.
'''
ps = ps.data.numpy().squeeze()
fig, (ax1, ax2) = plt.subplots(figsize=(6,9), ncols=2)
ax1.imshow(img.resize_(1, 28, 28).numpy().squeeze())
ax1.axis('off')
ax2.barh(np.arange(10), ps)
ax2.set_aspect(0.1)
ax2.set_yticks(np.arange(10))
if version == "MNIST":
ax2.set_yticklabels(np.arange(10))
elif version == "Fashion":
ax2.set_yticklabels(['T-shirt/top',
'Trouser',
'Pullover',
'Dress',
'Coat',
'Sandal',
'Shirt',
'Sneaker',
'Bag',
'Ankle Boot'], size='small');
ax2.set_title('Class Probability')
ax2.set_xlim(0, 1.1)
plt.tight_layout()
import matplotlib.pyplot as plt
import numpy as np
from torch import nn, optim
from torch.autograd import Variable


def test_network(net, trainloader):

criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

dataiter = iter(trainloader)
images, labels = dataiter.next()

# Create Variables for the inputs and targets
inputs = Variable(images)
targets = Variable(images)

# Clear the gradients from all Variables
optimizer.zero_grad()

# Forward pass, then backward pass, then update weights
output = net.forward(inputs)
loss = criterion(output, targets)
loss.backward()
optimizer.step()

return True


def imshow(image, ax=None, title=None, normalize=True):
"""Imshow for Tensor."""
if ax is None:
fig, ax = plt.subplots()
image = image.numpy().transpose((1, 2, 0))

if normalize:
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image = std * image + mean
image = np.clip(image, 0, 1)

ax.imshow(image)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.tick_params(axis='both', length=0)
ax.set_xticklabels('')
ax.set_yticklabels('')

return ax


def view_recon(img, recon):
''' Function for displaying an image (as a PyTorch Tensor) and its
reconstruction also a PyTorch Tensor
'''

fig, axes = plt.subplots(ncols=2, sharex=True, sharey=True)
axes[0].imshow(img.numpy().squeeze())
axes[1].imshow(recon.data.numpy().squeeze())
for ax in axes:
ax.axis('off')
ax.set_adjustable('box-forced')

def view_classify(img, ps, version="MNIST"):
''' Function for viewing an image and it's predicted classes.
'''
ps = ps.data.numpy().squeeze()

fig, (ax1, ax2) = plt.subplots(figsize=(6,9), ncols=2)
ax1.imshow(img.resize_(1, 28, 28).numpy().squeeze())
ax1.axis('off')
ax2.barh(np.arange(10), ps)
ax2.set_aspect(0.1)
ax2.set_yticks(np.arange(10))
if version == "MNIST":
ax2.set_yticklabels(np.arange(10))
elif version == "Fashion":
ax2.set_yticklabels(['T-shirt/top',
'Trouser',
'Pullover',
'Dress',
'Coat',
'Sandal',
'Shirt',
'Sneaker',
'Bag',
'Ankle Boot'], size='small');
ax2.set_title('Class Probability')
ax2.set_xlim(0, 1.1)

plt.tight_layout()
File renamed without changes.
Loading