Skip to content

Commit

Permalink
warning removal from BS examples
Browse files Browse the repository at this point in the history
  • Loading branch information
icfaust committed Dec 4, 2024
1 parent 8e4cde0 commit 60aeaa6
Show file tree
Hide file tree
Showing 3 changed files with 14 additions and 14 deletions.
4 changes: 2 additions & 2 deletions examples/sklearnex/basic_statistics_spmd.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,5 +60,5 @@ def generate_data(par, size, seed=777):
bss = BasicStatisticsSpmd(["mean", "standard_deviation"])
bss.fit(dpt_data, dpt_weights)

print(f"Computed mean on rank {rank}:\n", bss.mean)
print(f"Computed std on rank {rank}:\n", bss.standard_deviation)
print(f"Computed mean on rank {rank}:\n", bss.mean_)
print(f"Computed std on rank {rank}:\n", bss.standard_deviation_)
12 changes: 6 additions & 6 deletions examples/sklearnex/incremental_basic_statistics.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,16 +30,16 @@
X_3 = np.array([[1, 1], [1, 2], [2, 3]])
result = incbs.partial_fit(X_3)

print(f"Mean:\n{result.mean}")
print(f"Max:\n{result.max}")
print(f"Sum:\n{result.sum}")
print(f"Mean:\n{result.mean_}")
print(f"Max:\n{result.max_}")
print(f"Sum:\n{result.sum_}")

# We put the whole data to fit method, it is split automatically and then
# partial_fit is called for each batch.
incbs = IncrementalBasicStatistics(result_options=["mean", "max", "sum"], batch_size=3)
X = np.array([[0, 1], [0, 1], [1, 2], [1, 1], [1, 2], [2, 3]])
result = incbs.fit(X)

print(f"Mean:\n{result.mean}")
print(f"Max:\n{result.max}")
print(f"Sum:\n{result.sum}")
print(f"Mean:\n{result.mean_}")
print(f"Max:\n{result.max_}")
print(f"Sum:\n{result.sum_}")
12 changes: 6 additions & 6 deletions examples/sklearnex/incremental_basic_statistics_dpctl.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,16 +36,16 @@
X_3 = dpt.asarray([[1, 1], [1, 2], [2, 3]], sycl_queue=queue)
result = incbs.partial_fit(X_3)

print(f"Mean:\n{result.mean}")
print(f"Max:\n{result.max}")
print(f"Sum:\n{result.sum}")
print(f"Mean:\n{result.mean_}")
print(f"Max:\n{result.max_}")
print(f"Sum:\n{result.sum_}")

# We put the whole data to fit method, it is split automatically and then
# partial_fit is called for each batch.
incbs = IncrementalBasicStatistics(result_options=["mean", "max", "sum"], batch_size=3)
X = dpt.asarray([[0, 1], [0, 1], [1, 2], [1, 1], [1, 2], [2, 3]], sycl_queue=queue)
result = incbs.fit(X)

print(f"Mean:\n{result.mean}")
print(f"Max:\n{result.max}")
print(f"Sum:\n{result.sum}")
print(f"Mean:\n{result.mean_}")
print(f"Max:\n{result.max_}")
print(f"Sum:\n{result.sum_}")

0 comments on commit 60aeaa6

Please sign in to comment.