Skip to content

List of DL topics and resources essential for cracking interviews

Notifications You must be signed in to change notification settings

vlgiitr/DL_Topics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 

Repository files navigation

Deep Learning Topics and Resources

description

Resources for DL in General

  1. Blogs
    • Lilian Weng’s Blog [link]
    • AI Summer Blog [link]
    • Colah’s Blog [link]
  2. Books
    • Neural Networks and Deep Learning [link]
    • Deep Learning Book [link]
    • Dive into Deep Learning [link]
    • Reinforcement Learning: An Introduction | Sutton and Barto [link]
  3. Open Courses

Mathematics

  1. Linear Algebra ([notes][practice questions])

    • 3Blue1Brown essence of linear algebra [youtube]
    • Gilbert Strang’s lectures on Linear Algebra [link] [youtube]
    • Topics
      • Linear Transformations
      • Linear Dependence and Span
      • Eigendecomposition - Eigenvalues and Eigenvectors
      • Singular Value Decomposition [blog]
  2. Probability and Statistics ([notes][youtube series])

    • Harvard Statistics 110: Probability [link] [youtube]
    • Topics
      • Expectation, Variance, and Co-variance
      • Distributions
      • Random Walks
      • Bias and Variance
        • Bias Variance Trade-off
      • Estimators
        • Biased and Unbiased
      • Maximum Likelihood Estimation [blog]
      • Maximum A-Posteriori (MAP) Estimation [blog]
  3. Information Theory [youtube]

    • (Shannon) Entropy [blog]
    • Cross Entropy, KL Divergence [blog]
    • KL Divergence
      • Not a distance metric (unsymmetric)
      • Derivation from likelihood ratio (Blog)
      • Always greater than 0
      • Relation with Entropy (Explanation)

Basics

  1. Neural Networks Overview [youtube]
  2. Backpropogation
    • Vanilla [blog]
    • Backpropagation in CNNs [blog]
    • Backprop through time [blog]
  3. Loss Functions
    • MSE Loss
      • Derivation by MLE and MAP
    • Cross Entropy Loss
      • Binary Cross Entropy
      • Categorical Cross Entropy
  4. Activation Functions (Sigmoid, Tanh, ReLU and variants) (blog)
  5. Optimizers
  6. Regularization
    • Early Stopping
    • Noise Injection
    • Dataset Augmentation
    • Ensembling
    • Parameter Norm Penalties
      • L1 (sparsity)
      • L2 (smaller parameter values)
    • BatchNorm [Paper]
      • Internal Covariate Shift
      • BatchNorm in CNNs [Link]
      • Backprop through BatchNorm Layer [Explanation]
    • Dropout Regularization [Paper]

Computer Vision

  1. Convolution [youtube]

    • Cross-correlation
    • Pooling (Average, Max Pool)
    • Strides and Padding
    • Output volume dimension calculation
    • Deconvolution (Transposed Convolution), Upsampling, Reverse Pooling [Visualization]
    • Types of convolution operation [blog]
  2. ImageNet Classification

  3. Object Detection [blog series]

  4. Semantic Segmentation

Natural Language Processing

  1. Recurrent Neural Networks

    • Architectures (Limitations and inspiration behind every model)
    • Vanishing and Exploding Gradients
  2. Word Embeddings [blog_1] [blog_2]

    • Word2Vec
    • CBOW
    • Glove
    • SkipGram, NGram
    • FastText
    • ELMO
    • BERT
  3. Transformers [blog posts] [youtube series]

    • Attention is All You Need [blog] [paper] [annotated transformer]
    • Query-Key-Value Attention Mechanism (Quadratic Time)
    • Position Embeddings [blog]
    • BERT (Masked Language Modelling) [blog]
    • Longe Range Sequence Modelling [blog]
    • ELECTRA (Pretraining Transformers as Discriminators) [blog]
    • GPT (Causal Language Modelling) [blog]
    • OpenAI ChatGPT [blog]

Multimodal Learning

  • Vision Language Models | AI Summer [blog]
  • Open AI DALL-E [blog]
  • OpenAI CLIP [blog]
  • Flamingo [blog]
  • Gato [blog]
  • data2vec [blog]
  • OpenAI Whisper [blog]

Generative Models

  1. Generative Adversarial Networks (GANs) [blog series]
    • Basic Idea
    • Variants
    • Mode Collapse
    • GAN Hacks [link]
  2. Variational Autoencoders (VAEs)
    • Variational Inference [tutorial paper]
    • ELBO and Loss Function derivation
  3. Normalizing Flows
    • Basic Idea and Applications [link]

Stable Diffusion

  • Demos

    • Lexica (Stable Diffusion search engine) [link]
    • Stability AI | Huggingface Spaces [link]
  • Diffusion Models in general [paper]

    • What are Diffusion Models? | Lil'Log [link]
  • Stable Diffusion | Stability AI [blog] [annotated stable diffusion]

  • Illustrated Stable DIffusion | Jay Alammar [blog]

  • Stable Diffusion in downstream Vision tasks

Keeping up with the developments in Deep Learning

  • Youtube Channels
    • Yannic Kilcher [link]
    • Two Minute Papers [link]
  • Blogs
    • DeepMind Blog [link]
    • OpenAI Blog [link]
    • Google AI Blog [link]
    • Meta AI Blog [link]
    • Nvidia - Deep Learning Blog [link]
    • Microsoft Research Blog [link]
  • Trending Reseach Papers
    • labml [link]
    • deep learning monitor [link]

Contributing

We welcome contributions to add resources such as notes, blogs, or papers for a topic. Feel free to open a pull request for the same!