Skip to content

Commit

Permalink
Commiting DeepRecSys implementation
Browse files Browse the repository at this point in the history
  • Loading branch information
alugupta committed May 28, 2020
1 parent 5d488f0 commit 7de4704
Show file tree
Hide file tree
Showing 52 changed files with 7,337 additions and 0 deletions.
189 changes: 189 additions & 0 deletions DeepRecSys.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,189 @@

from __future__ import absolute_import, division, print_function, unicode_literals

from utils.utils import cli
from functools import reduce
import operator

from inferenceEngine import inferenceEngine
from accelInferenceEngine import accelInferenceEngine
from loadGenerator import loadGenerator

from multiprocessing import Process, Queue
import csv
import sys
import os
import time
import numpy as np

import signal

def DeepRecSys():
print("Running DeepRecSys")

# ######################################################################
# Get and print command line arguments for this experiment
# ######################################################################
args = cli()

arg_keys = [str(key) for key in vars(args)]
print("============================================================")
print("DeepRecSys configuration")
for key in arg_keys:
print(key, getattr(args, key))
print("============================================================")

if args.queue == True:

if args.model_accel:
args.inference_engines += 1

print("[DeepRecSys] total inference engine ", args.inference_engines)

# Setup single request Queue and multiple response queues
requestQueue = Queue(maxsize=1024)
accelRequestQueue = Queue(maxsize=32)
pidQueue = Queue()
responseQueues = []
inferenceEngineReadyQueue = Queue()

for _ in range(args.inference_engines):
responseQueues.append(Queue())

# Create load generator to mimic per-server load
loadGeneratorReturnQueue = Queue()
DeepRecLoadGenerator = Process( target = loadGenerator,
args = (args, requestQueue, loadGeneratorReturnQueue, inferenceEngineReadyQueue, pidQueue, accelRequestQueue)
)

# Create backend inference engines that consume requests from load
# generator
DeepRecEngines = []
for i in range(args.inference_engines):
if (args.model_accel) and (i == (args.inference_engines - 1)):
p = Process( target = accelInferenceEngine,
args = (args, accelRequestQueue, i, responseQueues[i], inferenceEngineReadyQueue)
)
else:
p = Process( target = inferenceEngine,
args = (args, requestQueue, i, responseQueues[i], inferenceEngineReadyQueue)
)
p.daemon = True
DeepRecEngines.append(p)

# Start all processes
for i in range(args.inference_engines):
DeepRecEngines[i].start()

DeepRecLoadGenerator.start()

responses_list = []
inference_engines_finished = 0

response_sets = {}
response_latencies = []
final_response_latencies = []

request_granularity = int(args.req_granularity)

while inference_engines_finished != args.inference_engines:
for i in range(args.inference_engines):
if (responseQueues[i].qsize()):
response = responseQueues[i].get()

# Process responses to determine what the running tail latency is and
# send new batch-size to loadGenerator
if response == None:
inference_engines_finished += 1
print("Joined ", inference_engines_finished, " inference engines")
sys.stdout.flush()
else:
key = (response.epoch, response.batch_id, response.exp_packet)
if key in response_sets.keys(): # Response already in the list
curr_val = response_sets[key]

val = (response.arrival_time,
response.inference_end_time,
response.total_sub_batches)

arr = min(curr_val[0], val[0])
inf = max(curr_val[1], val[1])
remain = curr_val[2]-1
response_sets[ (response.epoch, response.batch_id, response.exp_packet) ] = (arr, inf, remain)
else: # New response!
arr = response.arrival_time
inf = response.inference_end_time
remain = response.total_sub_batches - 1

response_sets[ (response.epoch, response.batch_id, response.exp_packet) ] = (arr, inf, remain)

# If this request is over then we can go ahead and compute the
# request latency in order to guide batch-scheduler
if remain == 0:
response_latencies.append( inf - arr )

# If we are done finding the optimum batching and accelerator
# partitioning threshold then we log the response latency to
# measure packets later
if not response.exp_packet:
final_response_latencies.append( inf - arr )

if len(response_latencies) % request_granularity == 0:
print("Running latency: ", np.percentile(response_latencies[int(-1 * request_granularity):], 95) * 1000.)
sys.stdout.flush()
# Add
pidQueue.put ( np.percentile(response_latencies[int(-1 * request_granularity):], 95) * 1000. )

# Add responses to final list
responses_list.append(response.__dict__)

print("Finished runing over the inference engines")
sys.stdout.flush()

log_dir = reduce(lambda x, y: x + y, args.log_file.split("/")[:-1])

if not os.path.exists(log_dir):
os.makedirs(log_dir)

with open(args.log_file, "w") as f:
for response in responses_list:
f.writelines(str(response) + "\n")

# Join/end all processes
DeepRecLoadGenerator.join()
total_requests = loadGeneratorReturnQueue.get()

cpu_sub_requests = total_requests[0]
cpu_requests = total_requests[1]
accel_requests = total_requests[2]

agg_requests = cpu_sub_requests + accel_requests

print("Exiting DeepRecSys after printing ", len(responses_list), "/" , agg_requests)

print("CPU sub requests ", cpu_sub_requests, "/" , agg_requests)
print("CPU requests ", cpu_requests)
print("Accel requests ", accel_requests, "/" , agg_requests)

meas_qps_responses = list(filter(lambda x: (not x['exp_packet']) and (x['sub_id'] == 0), responses_list))

initial_time = meas_qps_responses[0]['inference_end_time']
end_time = meas_qps_responses[-1]['inference_end_time']

print("Measured QPS: ", (len(meas_qps_responses)) / (end_time - initial_time))
print("Measured p95 tail-latency: ", np.percentile(final_response_latencies, 95) * 1000., " ms")
print("Measured p99 tail-latency: ", np.percentile(final_response_latencies, 99) * 1000., " ms")

sys.stdout.flush()

for i in range(args.inference_engines):
DeepRecEngines[i].terminate()

else: # No queue, run DeepRecSys in standalone mode
inferenceEngine(args)

return


if __name__=="__main__":
DeepRecSys()
87 changes: 87 additions & 0 deletions accelInferenceEngine.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@

from __future__ import absolute_import, division, print_function, unicode_literals

import numpy as np

from utils.packets import ServiceResponse
from utils.utils import debugPrint

# data generation
import threading
from multiprocessing import Queue
from accelerator.predict_execution import *

import time
import sys


def accelInferenceEngine(args,
requestQueue=None,
engine_id=None,
responseQueue=None,
inferenceEngineReadyQueue=None):

### some basic setup ###
np.random.seed(args.numpy_rand_seed)
np.set_printoptions(precision=args.print_precision)

if requestQueue == None:
print("If you want to run Accel in isolation please use the DeepRecBench/models/ directory directly")
sys.stdout.flush()
sys.exit()

else:
inferenceEngineReadyQueue.put(True)

model_name = args.model_name
if not (model_name in ["wnd", "rm1", "rm2", "rm3", "din", "dien", "mtwnd"]):
print("Model not found in ones supported")
sys.stdout.flush()
sys.exit()

accel_data = GPU_Data(root_dir = args.accel_root_dir, hardware="nvidia_gtx_1080_ti")

while True:
debugPrint(args, "Accel", "Trying to pull request")
request = requestQueue.get()
debugPrint(args, "Accel", "Pulled request")

if request is None:
debugPrint(args, "Accel", "Sending final done signal")
responseQueue.put(None)
debugPrint(args, "Accel", "Sent final done signal")
return

batch_id = request.batch_id
batch_size = request.batch_size

start_time = time.time()

# Model Accel execution time
# For GPUs this based on real measured hardware performance (inference and dataloading)
# based on accelerator/predict_execution.py
eval_time = predict_time(model_name, batch_size, accel_data)
time.sleep(eval_time / 1000. ) # Eval time is in milli-seconds

end_time = time.time()

response = ServiceResponse( consumer_id = engine_id,
epoch = request.epoch,
batch_id = request.batch_id,
batch_size = request.batch_size,
arrival_time = request.arrival_time,
process_start_time = start_time,
queue_end_time = end_time,
inference_end_time = end_time,
out_batch_size = request.batch_size,
total_sub_batches = request.total_sub_batches,
exp_packet = request.exp_packet,
sub_id = request.sub_id,
)

debugPrint(args, "Accel", "Sending response back")
responseQueue.put(response)
debugPrint(args, "Accel", "Sent response back")

return

6 changes: 6 additions & 0 deletions accelerator/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
# Instructions

For each accelerator model (e.g., `nvidia_gtx_1080_ti`),

1. Run `generate_data.py` to generate accelerator usage raw data (you should see a populated `raw_data` directory if successful)
2. Run `predict_execution.py` to test accelerator execution time modeling (you should see a populated `characterization_data` directory if successful)
Empty file added accelerator/__init__.py
Empty file.
Empty file.
40 changes: 40 additions & 0 deletions accelerator/nvidia_gtx_1080_ti/generate_data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
from __future__ import print_function
import os, sys

def sweep_cmd(config_file, model_file, output_file):

num_epochs = 100
num_batches = 4

rt_config_gpu = "--inference_only --inter_op_workers 1 --caffe2_net_type async_dag --use_accel "
model_config = "--config_file ../../models/configs/" + config_file + " "

with open(output_file, 'w') as outfile:
sys.stdout = outfile

# Sweep Batch Size from {2^0 = 1, ... ,2^14 = 16384}
for x in range(6):
n = 4**x

data_config = "--nepochs " + str(num_epochs) + " --num_batches " + str(num_batches) + " --mini_batch_size " + str(n) + " --max_mini_batch_size " + str(n)
gpu_command = "python ../../models/" + model_file + " " + rt_config_gpu + model_config + data_config

print("--------------------Running ("+model_file+") GPU Test with Batch Size " + str(n) +"--------------------\n")
outfile.write(os.popen(gpu_command).read()+"\n")

sys.stdout = sys.__stdout__



if __name__ == "__main__":
if not os.path.exists("raw_data"):
os.mkdir("raw_data")

sweep_cmd("wide_and_deep.json", "wide_and_deep.py", "raw_data/results_wnd.txt")
sweep_cmd("dlrm_rm1.json", "dlrm_s_caffe2.py", "raw_data/results_rm1.txt")
sweep_cmd("dlrm_rm2.json", "dlrm_s_caffe2.py", "raw_data/results_rm2.txt")
sweep_cmd("dlrm_rm3.json", "dlrm_s_caffe2.py", "raw_data/results_rm3.txt")
sweep_cmd("ncf.json", "ncf.py", "raw_data/results_ncf.txt")
sweep_cmd("mtwnd.json", "multi_task_wnd.py", "raw_data/results_mtwnd.txt")
sweep_cmd("din.json", "din.py", "raw_data/results_din.txt")
sweep_cmd("dien.json", "dien.py", "raw_data/results_dien.txt")
Loading

0 comments on commit 7de4704

Please sign in to comment.