Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

perf: faster cropping; parallel imread/crop; mt_loop and mp_loop helper functions #43

Merged
merged 3 commits into from
Mar 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
65 changes: 60 additions & 5 deletions camtools/image.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ def crop_white_boarders(im: np.array, padding: Tuple[int] = (0, 0, 0, 0)) -> np.
return im_dst


def compute_cropping(im: np.array) -> Tuple[int]:
def compute_cropping_v1(im: np.array) -> Tuple[int]:
"""
Compute top, bottom, left, right white boarder in pixels.

Expand Down Expand Up @@ -76,6 +76,61 @@ def compute_cropping(im: np.array) -> Tuple[int]:
return crop_t, crop_b, crop_l, crop_r


def compute_cropping(
im: np.ndarray,
check_with_v1=False,
) -> Tuple[int, int, int, int]:
"""
Compute top, bottom, left, right white borders in pixels for a 3-channel
image.

This function is designed for (H, W, 3) images, where each pixel's value
ranges from 0.0 to 1.0, and white pixels are represented by (1.0, 1.0, 1.0).

Args:
im (np.ndarray): Input image as a NumPy array of shape (H, W, 3) and
dtype float32.

Returns:
Tuple[int, int, int, int]: A tuple containing the number of white pixels
to crop from the top, bottom, left, and right edges, respectively.
"""
if not im.dtype == np.float32:
raise ValueError(f"Expected im.dtype to be np.float32, but got {im.dtype}")
if im.ndim != 3 or im.shape[2] != 3:
raise ValueError(f"Expected im to be of shape (H, W, 3), but got {im.shape}")

# Create a mask where white pixels are marked as True
white_mask = np.all(im == 1.0, axis=-1)

# Find the indices of rows and columns where there's at least one non-white pixel
rows_with_color = np.where(~white_mask.all(axis=1))[0]
cols_with_color = np.where(~white_mask.all(axis=0))[0]

# Determine the crop values based on the positions of non-white pixels
crop_t = rows_with_color[0] if len(rows_with_color) else 0
crop_b = im.shape[0] - rows_with_color[-1] - 1 if len(rows_with_color) else 0
crop_l = cols_with_color[0] if len(cols_with_color) else 0
crop_r = im.shape[1] - cols_with_color[-1] - 1 if len(cols_with_color) else 0

# Check the results against compute_cropping_v1 if requested
if check_with_v1:
crop_t_v1, crop_b_v1, crop_l_v1, crop_r_v1 = compute_cropping_v1(im)
if (
crop_t != crop_t_v1
or crop_b != crop_b_v1
or crop_l != crop_l_v1
or crop_r != crop_r_v1
):
raise ValueError(
f"compute_cropping_v1 failed to compute the correct cropping: "
f"({crop_t}, {crop_b}, {crop_l}, {crop_r}) != "
f"({crop_t_v1}, {crop_b_v1}, {crop_l_v1}, {crop_r_v1})"
)

return crop_t, crop_b, crop_l, crop_r


def apply_cropping_padding(
im_src: np.ndarray,
cropping: Tuple[int],
Expand Down Expand Up @@ -114,12 +169,12 @@ def apply_cropping_padding(
return im_dst


def apply_croppings_paddings(im_srcs, croppings, paddings):
def apply_croppings_paddings(src_ims, croppings, paddings):
"""
Apply cropping and padding to a list of images.

Args:
im_srcs: list of (H, W, 3) images, float32.
src_ims: list of (H, W, 3) images, float32.
croppings: list of 4-tuples
[
(crop_t, crop_b, crop_l, crop_r),
Expand All @@ -133,7 +188,7 @@ def apply_croppings_paddings(im_srcs, croppings, paddings):
...
]
"""
num_ims = len(im_srcs)
num_ims = len(src_ims)
if not len(croppings) == num_ims:
raise ValueError(f"len(croppings) == {len(croppings)} != {num_ims}")
if not len(paddings) == num_ims:
Expand All @@ -143,7 +198,7 @@ def apply_croppings_paddings(im_srcs, croppings, paddings):
raise ValueError(f"len(cropping) == {len(cropping)} != 4")

dst_ims = []
for im_src, cropping, padding in zip(im_srcs, croppings, paddings):
for im_src, cropping, padding in zip(src_ims, croppings, paddings):
im_dst = apply_cropping_padding(im_src, cropping, padding)
dst_ims.append(im_dst)

Expand Down
21 changes: 10 additions & 11 deletions camtools/tools/crop_boarders.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,12 +8,14 @@
```
"""

from pathlib import Path
import argparse
from pathlib import Path

import numpy as np
import camtools as ct
from tqdm import tqdm

import camtools as ct


def instantiate_parser(parser):
parser.add_argument(
Expand Down Expand Up @@ -106,10 +108,8 @@ def entry_point(parser, args):
]

# Read.
src_ims = [
ct.io.imread(src_path, alpha_mode="white")
for src_path in tqdm(src_paths, desc="Reading images")
]
src_ims = ct.utility.mt_loop(ct.io.imread, src_paths, alpha_mode="white")

for src_im in src_ims:
if not src_im.dtype == np.float32:
raise ValueError(f"Input image {src_path} must be of dtype float32.")
Expand All @@ -126,10 +126,9 @@ def entry_point(parser, args):
"All images must be of the same shape when --same_crop is " "specified."
)

individual_croppings = [
ct.image.compute_cropping(im)
for im in tqdm(src_ims, desc="Computing croppings")
]
individual_croppings = ct.utility.mt_loop(ct.image.compute_cropping, src_ims)

# Compute the minimum cropping boarders.
min_crop_u, min_crop_d, min_crop_l, min_crop_r = individual_croppings[0]
for crop_u, crop_d, crop_l, crop_r in individual_croppings[1:]:
min_crop_u = min(min_crop_u, crop_u)
Expand All @@ -147,7 +146,7 @@ def entry_point(parser, args):
paddings = [(padding, padding, padding, padding)] * len(src_ims)
else:
# Compute cropping boarders.
croppings = [ct.image.compute_cropping(src_im) for src_im in src_ims]
croppings = ct.utility.mt_loop(ct.image.compute_cropping, src_ims)

# Compute paddings.
if args.pad_pixel != 0:
Expand Down
68 changes: 68 additions & 0 deletions camtools/utility.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,71 @@
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed
from typing import Any, Callable, Iterable

from tqdm import tqdm


def mt_loop(
func: Callable[[Any], Any],
inputs: Iterable[Any],
**kwargs,
) -> list:
"""
Applies a function to each item in the given list in parallel using multi-threading.

Args:
func (Callable[[Any], Any]): The function to apply. Must accept a single
argument.
inputs (Iterable[Any]): An iterable of inputs to process with the
function.
**kwargs: Additional keyword arguments to pass to `func`.

Returns:
list: A list of results from applying `func` to each item in `list_input`.
"""
desc = f"[mt] {func.__name__}"
with ThreadPoolExecutor() as executor:
futures = [executor.submit(func, item, **kwargs) for item in inputs]
progress = tqdm(
as_completed(futures),
total=len(inputs),
desc=desc,
)
results = [future.result() for future in progress]
return results


def mp_loop(
func: Callable[[Any], Any],
inputs: Iterable[Any],
**kwargs,
) -> list:
"""
Applies a function to each item in the given list in parallel using multi-processing.

Args:
func (Callable[[Any], Any]): The function to apply. Must accept a single
argument.
inputs (Iterable[Any]): An iterable of inputs to process with the
function.
**kwargs: Additional keyword arguments to pass to `func`.

Returns:
list: A list of results from applying `func` to each item in `inputs`.
"""
desc = f"[mp] {func.__name__}"
with ProcessPoolExecutor() as executor:
future_to_item = {
executor.submit(func, item, **kwargs): item for item in inputs
}
progress = tqdm(
as_completed(future_to_item),
total=len(inputs),
desc=desc,
)
results = [future.result() for future in progress]
return results


def query_yes_no(question, default=None):
"""Ask a yes/no question via raw_input() and return their answer.

Expand Down
Loading