Your Personal EEG Processing Toolkit
Welcome to EEGDojo, a powerful and versatile toolbox for EEG signal preprocessing and artifact detection. Whether you're a beginner or an expert in EEG analysis, EEGDojo provides clean, structured, and efficient workflows to detect bad channels, run ICA, and clean EEG data like a pro.
- Modular and Customizable: Run modular bad channel detection methods (e.g., Kurtosis, Spectrum, ICLabel).
- ICA Automation: Integrates ICLabel, FASTER, and spatial filtering methods.
- User-Friendly: Output reports and logs for transparency and reproducibility.
- Visualization-Ready: Automatically saves bad channel/component properties for review.
- Flexible Integration: Suitable for EEGLAB pipelines and EEG research workflows.
Clone the repository:
git clone https://github.com/yourusername/EEGDojo.gitExample pipeline for bad channel detection and ICA artifact removal:
% Load EEG data
EEG = pop_loadset('filename', 'example_data.set');
% Set parameters
params = load('params_example.mat');
% Run bad channel detection
[EEG, BadChan] = detect_badchannels(EEG, params);
% Run ICA and remove bad components
[EEG, BadICs] = EEGdojo_remove_badICs(EEG, params, 1);
% Save cleaned data
pop_saveset(EEG, 'filename', 'example_data_cleaned.set');Below is a sample workflow for EEG data preprocessing:
Detect bad channels using modular methods (e.g., Spectrum, Kurtosis, CleanRawData). Run ICA to identify and remove bad components. Save results and export logs/visualizations for further analysis.
We welcome contributions to EEGDojo! Whether it's fixing a bug, adding new features, or improving documentation, feel free to fork this repository and submit a pull request.
This project is licensed under the MIT License.
Enjoy EEG processing like a ninja in the EEG dojo! 🥋
