This repository contains the code, machine learning models, and datasets used in the paper "A Survey of Classical and Quantum Sequence Models"
This study is a review and comprehensive analysis of various classical and quantum sequence models. It also highlights and delves deep into some of the most recent developments in quantum sequence models. Particular attention has been placed on Quantum Self Attention Nueral Networks(QSANN) and Quantum Recurrent Nueral Networks(QRNN). We implement these models and parallely compare them with their classical counterparts. We also evaluate the performance of quantumm and classical self attention nueral networks on vision related tasks. The implementations are as follows:
- Quantum Self Attention Nueral Networks (QSANN)
- Quantum Vision Transformer (QVT)
- Classical Vision Transformer (CVT)
- Classical Transformer
- Quantum Recurrent Nueral Networks (QRNN)
- Classical Recurrent Nueral Networks
- Meaning Classification(MC)
- RELPRON
- Sentiment Labelled Sentences
- Paper : Kotzias, Dimitrios, et al. "From group to individual labels using deep features." Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. 2015.
- Source : Kotzias,Dimitrios. (2015). Sentiment Labelled Sentences. UCI Machine Learning Repository. https://doi.org/10.24432/C57604.
- Optical Recognition of Handwritten Digits
- MNIST
- Fashion MNIST
.
├── Checkpoint presentations
│ └── QAMP_31_first_checkpoint_1_final.pptx
├── Classical_Transformer.ipynb
├── Datasets
│ ├── MC RP Dataset
│ │ ├── mc_dev_data.txt
│ │ ├── mc_test_data.txt
│ │ ├── mc_train_data.txt
│ │ ├── rp_test_data.txt
│ │ └── rp_train_data.txt
│ └── Sentiment Labelled Sentences Dataset
│ ├── amazon_cells_labelled.txt
│ ├── imdb_labelled.txt
│ ├── readme.txt
│ └── yelp_labelled.txt
├── Presentations shared
│ ├── Classical_attention_survey_Anu.pdf
│ ├── QML_Image_Encoding_paper summary.pptx
│ ├── QRL _35_ppt_QAMP.pptx
│ ├── QRNN_QAMP.pptx
│ ├── Transformers_Presentation_Anu.pdf
│ └── gpt models.pdf
├── QRNN
│ ├── Amp_encoding_QRNN.ipynb
│ ├── QRNN.ipynb
│ ├── QRNN_PENNY_TFIDF.ipynb
│ ├── QRNN_Pennylane.ipynb
│ ├── QRNN_QISKIT_TFIDF.ipynb
│ └── QRNN_qiskit.ipynb
├── QRNN Image Classification.ipynb
├── QSANN codes
│ ├── Modified_QSANN_pennylane_w_pred_trained_model.ipynb
│ ├── QSANN_pennylane.ipynb
│ ├── QSANN_qiskit.ipynb
│ ├── QSANN_qiskit_with_preprocessor.ipynb
│ └── Qsann_with_preprocessor.ipynb
├── QTT
│ ├── Feat_eco_model_222111_vocab_size20_mc
│ ├── Feat_eco_model_222121_vocab_size100_rp
│ └── QSANN_qiskit_experiment_pos_enco.ipynb
├── QVT
│ ├── Quantum Vision Transformer-PennyLane-Binary.ipynb
│ └── Quantum Vision Transformer-PennyLane-MutliClass.ipynb
├── README.md
├── RNN.ipynb
└── Survey_plot.ipynb
Get the code :
git clone https://github.com/QAMPspring2023/qgpt-issue-31.git