- 
                Notifications
    
You must be signed in to change notification settings  - Fork 557
 
test: add mock embedding provider tests #1446
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
          
     Merged
      
      
    
  
     Merged
                    Changes from 2 commits
      Commits
    
    
            Show all changes
          
          
            3 commits
          
        
        Select commit
          Hold shift + click to select a range
      
      
    File filter
Filter by extension
Conversations
          Failed to load comments.   
        
        
          
      Loading
        
  Jump to
        
          Jump to file
        
      
      
          Failed to load files.   
        
        
          
      Loading
        
  Diff view
Diff view
There are no files selected for viewing
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              | Original file line number | Diff line number | Diff line change | 
|---|---|---|
| @@ -0,0 +1,344 @@ | ||
| # SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
| # SPDX-License-Identifier: Apache-2.0 | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
| 
     | 
||
| import sys | ||
| from unittest.mock import MagicMock, Mock, patch | ||
| 
     | 
||
| import pytest | ||
| 
     | 
||
| try: | ||
| import nemoguardrails.embeddings.providers.cohere | ||
| 
     | 
||
| COHERE_AVAILABLE = True | ||
| except (ImportError, ModuleNotFoundError): | ||
| COHERE_AVAILABLE = False | ||
| 
     | 
||
| 
     | 
||
| @pytest.mark.skipif( | ||
| not COHERE_AVAILABLE, reason="Cohere provider not available in this branch" | ||
| ) | ||
| class TestCohereEmbeddingModelMocked: | ||
| def test_init_with_known_model(self): | ||
| mock_cohere = MagicMock() | ||
| mock_client = Mock() | ||
| mock_cohere.Client.return_value = mock_client | ||
                
      
                  Pouyanpi marked this conversation as resolved.
               
          
            Show resolved
            Hide resolved
         | 
||
| 
     | 
||
| with patch.dict("sys.modules", {"cohere": mock_cohere}): | ||
| from nemoguardrails.embeddings.providers.cohere import CohereEmbeddingModel | ||
| 
     | 
||
| model = CohereEmbeddingModel("embed-multilingual-v3.0") | ||
| 
     | 
||
| assert model.model == "embed-multilingual-v3.0" | ||
| assert model.embedding_size == 1024 | ||
| assert model.input_type == "search_document" | ||
| assert model.client == mock_client | ||
| mock_cohere.Client.assert_called_once() | ||
| 
     | 
||
| def test_init_with_custom_input_type(self): | ||
| mock_cohere = MagicMock() | ||
| mock_client = Mock() | ||
| mock_cohere.Client.return_value = mock_client | ||
| 
     | 
||
| with patch.dict("sys.modules", {"cohere": mock_cohere}): | ||
| from nemoguardrails.embeddings.providers.cohere import CohereEmbeddingModel | ||
| 
     | 
||
| model = CohereEmbeddingModel( | ||
| "embed-english-v3.0", input_type="search_query" | ||
| ) | ||
| 
     | 
||
| assert model.model == "embed-english-v3.0" | ||
| assert model.embedding_size == 1024 | ||
                
      
                  Pouyanpi marked this conversation as resolved.
               
          
            Show resolved
            Hide resolved
         | 
||
| assert model.input_type == "search_query" | ||
| 
     | 
||
| def test_init_with_unknown_model(self): | ||
| mock_cohere = MagicMock() | ||
| mock_client = Mock() | ||
| mock_cohere.Client.return_value = mock_client | ||
| 
     | 
||
| mock_response = Mock() | ||
| mock_response.embeddings = [[0.1] * 512] | ||
| mock_client.embed.return_value = mock_response | ||
| 
     | 
||
| with patch.dict("sys.modules", {"cohere": mock_cohere}): | ||
| from nemoguardrails.embeddings.providers.cohere import CohereEmbeddingModel | ||
| 
     | 
||
| model = CohereEmbeddingModel("custom-unknown-model") | ||
| 
     | 
||
| assert model.model == "custom-unknown-model" | ||
| assert model.embedding_size == 512 | ||
| mock_client.embed.assert_called_once_with( | ||
| texts=["test"], | ||
| model="custom-unknown-model", | ||
| input_type="search_document", | ||
| ) | ||
| 
     | 
||
| def test_import_error_when_cohere_not_installed(self): | ||
| with patch.dict("sys.modules", {"cohere": None}): | ||
| with pytest.raises(ImportError, match="Could not import cohere"): | ||
| if "nemoguardrails.embeddings.providers.cohere" in sys.modules: | ||
| del sys.modules["nemoguardrails.embeddings.providers.cohere"] | ||
| 
     | 
||
| from nemoguardrails.embeddings.providers.cohere import ( | ||
| CohereEmbeddingModel, | ||
| ) | ||
| 
     | 
||
| CohereEmbeddingModel("embed-v4.0") | ||
| 
     | 
||
| def test_encode_success(self): | ||
| mock_cohere = MagicMock() | ||
| mock_client = Mock() | ||
| mock_cohere.Client.return_value = mock_client | ||
| 
     | 
||
| mock_response = Mock() | ||
| mock_response.embeddings = [ | ||
| [0.1, 0.2, 0.3], | ||
| [0.4, 0.5, 0.6], | ||
| ] | ||
| mock_client.embed.return_value = mock_response | ||
| 
     | 
||
| with patch.dict("sys.modules", {"cohere": mock_cohere}): | ||
| from nemoguardrails.embeddings.providers.cohere import CohereEmbeddingModel | ||
| 
     | 
||
| model = CohereEmbeddingModel("embed-english-light-v3.0") | ||
| documents = ["hello world", "test document"] | ||
| result = model.encode(documents) | ||
| 
     | 
||
| assert result == [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]] | ||
                
      
                  Pouyanpi marked this conversation as resolved.
               
              
                Outdated
          
            Show resolved
            Hide resolved
         | 
||
| mock_client.embed.assert_called_with( | ||
| texts=documents, | ||
| model="embed-english-light-v3.0", | ||
| input_type="search_document", | ||
| ) | ||
| 
     | 
||
| def test_encode_with_custom_input_type(self): | ||
| mock_cohere = MagicMock() | ||
| mock_client = Mock() | ||
| mock_cohere.Client.return_value = mock_client | ||
| 
     | 
||
| mock_response = Mock() | ||
| mock_response.embeddings = [[0.1, 0.2]] | ||
| mock_client.embed.return_value = mock_response | ||
| 
     | 
||
| with patch.dict("sys.modules", {"cohere": mock_cohere}): | ||
| from nemoguardrails.embeddings.providers.cohere import CohereEmbeddingModel | ||
| 
     | 
||
| model = CohereEmbeddingModel("embed-v4.0", input_type="classification") | ||
| documents = ["classify this"] | ||
| result = model.encode(documents) | ||
| 
     | 
||
| assert result == [[0.1, 0.2]] | ||
                
      
                  Pouyanpi marked this conversation as resolved.
               
              
                Outdated
          
            Show resolved
            Hide resolved
         | 
||
| mock_client.embed.assert_called_with( | ||
| texts=documents, model="embed-v4.0", input_type="classification" | ||
| ) | ||
| 
     | 
||
| @pytest.mark.asyncio | ||
| async def test_encode_async_success(self): | ||
| mock_cohere = MagicMock() | ||
| mock_client = Mock() | ||
| mock_cohere.Client.return_value = mock_client | ||
| 
     | 
||
| mock_response = Mock() | ||
| mock_response.embeddings = [[0.1, 0.2, 0.3]] | ||
| mock_client.embed.return_value = mock_response | ||
| 
     | 
||
| with patch.dict("sys.modules", {"cohere": mock_cohere}): | ||
| from nemoguardrails.embeddings.providers.cohere import CohereEmbeddingModel | ||
| 
     | 
||
| model = CohereEmbeddingModel("embed-multilingual-v3.0") | ||
| documents = ["async test"] | ||
| result = await model.encode_async(documents) | ||
| 
     | 
||
| assert result == [[0.1, 0.2, 0.3]] | ||
                
      
                  Pouyanpi marked this conversation as resolved.
               
              
                Outdated
          
            Show resolved
            Hide resolved
         | 
||
| mock_client.embed.assert_called_once() | ||
| 
     | 
||
| def test_init_with_api_key_kwarg(self): | ||
| mock_cohere = MagicMock() | ||
| mock_client = Mock() | ||
| mock_cohere.Client.return_value = mock_client | ||
| 
     | 
||
| with patch.dict("sys.modules", {"cohere": mock_cohere}): | ||
| from nemoguardrails.embeddings.providers.cohere import CohereEmbeddingModel | ||
| 
     | 
||
| model = CohereEmbeddingModel("embed-v4.0", api_key="test-key-123") | ||
| 
     | 
||
| mock_cohere.Client.assert_called_once_with(api_key="test-key-123") | ||
| 
     | 
||
| def test_all_predefined_models(self): | ||
| mock_cohere = MagicMock() | ||
| mock_client = Mock() | ||
| mock_cohere.Client.return_value = mock_client | ||
| 
     | 
||
| models_to_test = { | ||
| "embed-v4.0": 1536, | ||
| "embed-english-v3.0": 1024, | ||
| "embed-english-light-v3.0": 384, | ||
| "embed-multilingual-v3.0": 1024, | ||
| "embed-multilingual-light-v3.0": 384, | ||
| } | ||
| 
     | 
||
| with patch.dict("sys.modules", {"cohere": mock_cohere}): | ||
| from nemoguardrails.embeddings.providers.cohere import CohereEmbeddingModel | ||
| 
     | 
||
| for model_name, expected_size in models_to_test.items(): | ||
| model = CohereEmbeddingModel(model_name) | ||
| assert model.embedding_size == expected_size | ||
| assert model.model == model_name | ||
| 
     | 
||
| 
     | 
||
| class TestOpenAIEmbeddingModelMocked: | ||
                
      
                  Pouyanpi marked this conversation as resolved.
               
          
            Show resolved
            Hide resolved
         | 
||
| def test_init_with_known_model(self): | ||
| mock_openai = MagicMock() | ||
| mock_openai.__version__ = "1.0.0" | ||
| mock_client = Mock() | ||
| mock_openai.OpenAI.return_value = mock_client | ||
| 
     | 
||
| with patch.dict("sys.modules", {"openai": mock_openai}): | ||
| from nemoguardrails.embeddings.providers.openai import OpenAIEmbeddingModel | ||
| 
     | 
||
| model = OpenAIEmbeddingModel("text-embedding-3-small") | ||
| 
     | 
||
| assert model.model == "text-embedding-3-small" | ||
| assert model.embedding_size == 1536 | ||
| assert model.client == mock_client | ||
| mock_openai.OpenAI.assert_called_once() | ||
| 
     | 
||
| def test_init_with_unknown_model(self): | ||
| mock_openai = MagicMock() | ||
| mock_openai.__version__ = "1.0.0" | ||
| mock_client = Mock() | ||
| mock_openai.OpenAI.return_value = mock_client | ||
| 
     | 
||
| mock_response = Mock() | ||
| mock_record = Mock() | ||
| mock_record.embedding = [0.1] * 2048 | ||
| mock_response.data = [mock_record] | ||
| mock_client.embeddings.create.return_value = mock_response | ||
| 
     | 
||
| with patch.dict("sys.modules", {"openai": mock_openai}): | ||
| from nemoguardrails.embeddings.providers.openai import OpenAIEmbeddingModel | ||
| 
     | 
||
| model = OpenAIEmbeddingModel("custom-unknown-model") | ||
| 
     | 
||
| assert model.model == "custom-unknown-model" | ||
| assert model.embedding_size == 2048 | ||
| mock_client.embeddings.create.assert_called_once_with( | ||
| input=["test"], model="custom-unknown-model" | ||
| ) | ||
| 
     | 
||
| def test_import_error_when_openai_not_installed(self): | ||
| with patch.dict("sys.modules", {"openai": None}): | ||
| with pytest.raises(ImportError, match="Could not import openai"): | ||
| if "nemoguardrails.embeddings.providers.openai" in sys.modules: | ||
| del sys.modules["nemoguardrails.embeddings.providers.openai"] | ||
| 
     | 
||
| from nemoguardrails.embeddings.providers.openai import ( | ||
| OpenAIEmbeddingModel, | ||
| ) | ||
| 
     | 
||
| OpenAIEmbeddingModel("text-embedding-3-small") | ||
| 
     | 
||
| def test_old_version_error(self): | ||
| mock_openai = MagicMock() | ||
| mock_openai.__version__ = "0.28.0" | ||
| 
     | 
||
| with patch.dict("sys.modules", {"openai": mock_openai}): | ||
| from nemoguardrails.embeddings.providers.openai import OpenAIEmbeddingModel | ||
| 
     | 
||
| with pytest.raises(RuntimeError, match="openai<1.0.0"): | ||
| OpenAIEmbeddingModel("text-embedding-3-small") | ||
| 
     | 
||
| def test_encode_success(self): | ||
| mock_openai = MagicMock() | ||
| mock_openai.__version__ = "1.0.0" | ||
| mock_client = Mock() | ||
| mock_openai.OpenAI.return_value = mock_client | ||
| 
     | 
||
| mock_response = Mock() | ||
| mock_record1 = Mock() | ||
| mock_record1.embedding = [0.1, 0.2, 0.3] | ||
| mock_record2 = Mock() | ||
| mock_record2.embedding = [0.4, 0.5, 0.6] | ||
| mock_response.data = [mock_record1, mock_record2] | ||
| mock_client.embeddings.create.return_value = mock_response | ||
| 
     | 
||
| with patch.dict("sys.modules", {"openai": mock_openai}): | ||
| from nemoguardrails.embeddings.providers.openai import OpenAIEmbeddingModel | ||
| 
     | 
||
| model = OpenAIEmbeddingModel("text-embedding-ada-002") | ||
| documents = ["hello world", "test document"] | ||
| result = model.encode(documents) | ||
| 
     | 
||
| assert result == [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]] | ||
                
      
                  Pouyanpi marked this conversation as resolved.
               
              
                Outdated
          
            Show resolved
            Hide resolved
         | 
||
| mock_client.embeddings.create.assert_called_with( | ||
| input=documents, model="text-embedding-ada-002" | ||
| ) | ||
| 
     | 
||
| @pytest.mark.asyncio | ||
| async def test_encode_async_success(self): | ||
| mock_openai = MagicMock() | ||
| mock_openai.__version__ = "1.0.0" | ||
| mock_client = Mock() | ||
| mock_openai.OpenAI.return_value = mock_client | ||
| 
     | 
||
| mock_response = Mock() | ||
| mock_record = Mock() | ||
| mock_record.embedding = [0.1, 0.2, 0.3] | ||
| mock_response.data = [mock_record] | ||
| mock_client.embeddings.create.return_value = mock_response | ||
| 
     | 
||
| with patch.dict("sys.modules", {"openai": mock_openai}): | ||
| from nemoguardrails.embeddings.providers.openai import OpenAIEmbeddingModel | ||
| 
     | 
||
| model = OpenAIEmbeddingModel("text-embedding-3-small") | ||
| documents = ["async test"] | ||
| result = await model.encode_async(documents) | ||
| 
     | 
||
| assert result == [[0.1, 0.2, 0.3]] | ||
| mock_client.embeddings.create.assert_called_once() | ||
| 
     | 
||
| def test_init_with_api_key_kwarg(self): | ||
| mock_openai = MagicMock() | ||
| mock_openai.__version__ = "1.0.0" | ||
| mock_client = Mock() | ||
| mock_openai.OpenAI.return_value = mock_client | ||
| 
     | 
||
| with patch.dict("sys.modules", {"openai": mock_openai}): | ||
| from nemoguardrails.embeddings.providers.openai import OpenAIEmbeddingModel | ||
| 
     | 
||
| model = OpenAIEmbeddingModel( | ||
| "text-embedding-3-small", api_key="test-key-123" | ||
| ) | ||
| 
     | 
||
| mock_openai.OpenAI.assert_called_once_with(api_key="test-key-123") | ||
| 
     | 
||
| def test_all_predefined_models(self): | ||
| mock_openai = MagicMock() | ||
| mock_openai.__version__ = "1.0.0" | ||
| mock_client = Mock() | ||
| mock_openai.OpenAI.return_value = mock_client | ||
| 
     | 
||
| models_to_test = { | ||
| "text-embedding-ada-002": 1536, | ||
| "text-embedding-3-small": 1536, | ||
| "text-embedding-3-large": 3072, | ||
| } | ||
| 
     | 
||
| with patch.dict("sys.modules", {"openai": mock_openai}): | ||
| from nemoguardrails.embeddings.providers.openai import OpenAIEmbeddingModel | ||
| 
     | 
||
| for model_name, expected_size in models_to_test.items(): | ||
| model = OpenAIEmbeddingModel(model_name) | ||
| assert model.embedding_size == expected_size | ||
| assert model.model == model_name | ||
  Add this suggestion to a batch that can be applied as a single commit.
  This suggestion is invalid because no changes were made to the code.
  Suggestions cannot be applied while the pull request is closed.
  Suggestions cannot be applied while viewing a subset of changes.
  Only one suggestion per line can be applied in a batch.
  Add this suggestion to a batch that can be applied as a single commit.
  Applying suggestions on deleted lines is not supported.
  You must change the existing code in this line in order to create a valid suggestion.
  Outdated suggestions cannot be applied.
  This suggestion has been applied or marked resolved.
  Suggestions cannot be applied from pending reviews.
  Suggestions cannot be applied on multi-line comments.
  Suggestions cannot be applied while the pull request is queued to merge.
  Suggestion cannot be applied right now. Please check back later.
  
    
  
    
Uh oh!
There was an error while loading. Please reload this page.