-
Notifications
You must be signed in to change notification settings - Fork 2k
[#8460][feat] Revive and simplify Model Explorer visualization integration #10150
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Conversation
📝 WalkthroughWalkthroughUpdated the visualization module to revive the broken model explorer integration. Removed legacy JSON handling utilities, introduced non-blocking workflow with guard against missing dependencies, switched to ExportedProgram-based export via Changes
Estimated code review effort🎯 3 (Moderate) | ⏱️ ~20 minutes
Pre-merge checks and finishing touches❌ Failed checks (1 warning)
✅ Passed checks (4 passed)
✨ Finishing touches
🧪 Generate unit tests (beta)
Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out. Comment |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 1
Caution
Some comments are outside the diff and can’t be posted inline due to platform limitations.
⚠️ Outside diff range comments (1)
tensorrt_llm/_torch/auto_deploy/transform/library/visualization.py (1)
1-1: Add the required NVIDIA copyright header.As per coding guidelines, all TensorRT-LLM code must contain an NVIDIA copyright header with the year of its latest meaningful modification. The header is currently missing from this file.
🔎 Proposed fix
+# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# SPDX-License-Identifier: Apache-2.0 +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + """Transformation to the graph to render nicely in model_explorer."""Based on coding guidelines.
📜 Review details
Configuration used: Path: .coderabbit.yaml
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (1)
tensorrt_llm/_torch/auto_deploy/transform/library/visualization.py(2 hunks)
🧰 Additional context used
📓 Path-based instructions (2)
**/*.py
📄 CodeRabbit inference engine (CODING_GUIDELINES.md)
**/*.py: Code developed for TensorRT-LLM should conform to Python 3.8+
Indent Python code with 4 spaces. Do not use tabs
Always maintain the namespace when importing in Python, even if only one class or function from a module is used
Python files should use snake_case naming:some_file.py
Python classes should use PascalCase naming:class SomeClass
Python functions and methods should use snake_case naming:def my_awesome_function():
Python local variables should use snake_case naming:my_variable = ...
Python variable names that start with a number should be prefixed with 'k':k_99th_percentile = ...
Python global variables should use upper snake_case with prefix 'G':G_MY_GLOBAL = ...
Python constants should use upper snake_case naming:MY_CONSTANT = ...
Avoid shadowing variables declared in an outer scope in Python
Initialize all externally visible members of a Python class in the constructor
For Python interfaces that may be used outside a file, prefer docstrings over comments
Python comments should be reserved for code within a function, or interfaces that are local to a file
Use Google style docstrings in Python for classes and functions, which can be parsed by Sphinx
Python attributes and variables can be documented inline with type and description
Avoid using reflection in Python when functionality can be easily achieved without reflection
When using try-except blocks in Python, limit the except to the smallest set of errors possible
When using try-except blocks in Python to handle multiple possible variable types (duck-typing), keep the body of the try as small as possible, using the else block for logic
Files:
tensorrt_llm/_torch/auto_deploy/transform/library/visualization.py
**/*.{cpp,h,cu,cuh,py}
📄 CodeRabbit inference engine (CODING_GUIDELINES.md)
All TensorRT-LLM Open Source Software code should contain an NVIDIA copyright header that includes the year of its latest meaningful modification
Files:
tensorrt_llm/_torch/auto_deploy/transform/library/visualization.py
🧬 Code graph analysis (1)
tensorrt_llm/_torch/auto_deploy/transform/library/visualization.py (2)
tensorrt_llm/_torch/auto_deploy/transform/interface.py (3)
SharedConfig(61-69)TransformInfo(124-181)get(539-541)tensorrt_llm/_torch/auto_deploy/shim/interface.py (3)
CachedSequenceInterface(11-92)args(28-30)named_args(33-35)
🪛 Ruff (0.14.8)
tensorrt_llm/_torch/auto_deploy/transform/library/visualization.py
44-44: Unused method argument: factory
(ARG002)
45-45: Unused method argument: shared_config
(ARG002)
71-71: Do not catch blind exception: Exception
(BLE001)
⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (1)
- GitHub Check: Pre-commit Check
🔇 Additional comments (5)
tensorrt_llm/_torch/auto_deploy/transform/library/visualization.py (5)
14-17: LGTM!The import guard for the optional
model_explorerdependency is well-implemented, allowing graceful degradation when the library is unavailable.
20-28: LGTM!The
CUSTOM_OPSconstant follows proper naming conventions. The TODO comment appropriately flags future configurability as a potential enhancement.
31-38: LGTM!The class follows proper naming conventions and the comprehensive docstring clearly describes the transform's purpose and behavior.
40-51: LGTM!The early return guard when
model_exploreris unavailable is well-implemented, returningTransformInfo(skipped=True, ...)to gracefully skip visualization without failing the pipeline. The unusedfactoryandshared_configparameters are inherited from theBaseTransforminterface signature.
71-76: Exception handling is appropriate for non-blocking visualization.While broad exception catching is generally discouraged per coding guidelines, it's justified here to ensure visualization failures do not disrupt the transform pipeline. The error is logged and the transform gracefully skips, which aligns with the PR objective of making visualization non-blocking.
tensorrt_llm/_torch/auto_deploy/transform/library/visualization.py
Outdated
Show resolved
Hide resolved
b92a051 to
cbd00ca
Compare
Signed-off-by: Karthik Vetrivel <[email protected]>
cbd00ca to
c19c1c1
Compare
Description
This PR revives the Model Explorer graph visualization integration that was broken/outdated (fixes #8460).
Test Coverage
Ran the AutoDeploy example with visualization enabled:
Verified the transform gracefully skips when model_explorer is not installed:
TransformInfo(skipped=True, ...)without raising exceptionsPR Checklist
Please review the following before submitting your PR:
PR description clearly explains what and why. If using CodeRabbit's summary, please make sure it makes sense.
PR Follows TRT-LLM CODING GUIDELINES to the best of your knowledge.
Test cases are provided for new code paths (see test instructions)
Any new dependencies have been scanned for license and vulnerabilities
CODEOWNERS updated if ownership changes
Documentation updated as needed
Update tava architecture diagram if there is a significant design change in PR.
The reviewers assigned automatically/manually are appropriate for the PR.
Please check this after reviewing the above items as appropriate for this PR.
GitHub Bot Help
/bot [-h] ['run', 'kill', 'skip', 'reuse-pipeline'] ...Provide a user friendly way for developers to interact with a Jenkins server.
Run
/bot [-h|--help]to print this help message.See details below for each supported subcommand.
Details
run [--reuse-test (optional)pipeline-id --disable-fail-fast --skip-test --stage-list "A10-PyTorch-1, xxx" --gpu-type "A30, H100_PCIe" --test-backend "pytorch, cpp" --add-multi-gpu-test --only-multi-gpu-test --disable-multi-gpu-test --post-merge --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" --detailed-log --debug(experimental)]Launch build/test pipelines. All previously running jobs will be killed.
--reuse-test (optional)pipeline-id(OPTIONAL) : Allow the new pipeline to reuse build artifacts and skip successful test stages from a specified pipeline or the last pipeline if no pipeline-id is indicated. If the Git commit ID has changed, this option will be always ignored. The DEFAULT behavior of the bot is to reuse build artifacts and successful test results from the last pipeline.--disable-reuse-test(OPTIONAL) : Explicitly prevent the pipeline from reusing build artifacts and skipping successful test stages from a previous pipeline. Ensure that all builds and tests are run regardless of previous successes.--disable-fail-fast(OPTIONAL) : Disable fail fast on build/tests/infra failures.--skip-test(OPTIONAL) : Skip all test stages, but still run build stages, package stages and sanity check stages. Note: Does NOT update GitHub check status.--stage-list "A10-PyTorch-1, xxx"(OPTIONAL) : Only run the specified test stages. Examples: "A10-PyTorch-1, xxx". Note: Does NOT update GitHub check status.--gpu-type "A30, H100_PCIe"(OPTIONAL) : Only run the test stages on the specified GPU types. Examples: "A30, H100_PCIe". Note: Does NOT update GitHub check status.--test-backend "pytorch, cpp"(OPTIONAL) : Skip test stages which don't match the specified backends. Only support [pytorch, cpp, tensorrt, triton]. Examples: "pytorch, cpp" (does not run test stages with tensorrt or triton backend). Note: Does NOT update GitHub pipeline status.--only-multi-gpu-test(OPTIONAL) : Only run the multi-GPU tests. Note: Does NOT update GitHub check status.--disable-multi-gpu-test(OPTIONAL) : Disable the multi-GPU tests. Note: Does NOT update GitHub check status.--add-multi-gpu-test(OPTIONAL) : Force run the multi-GPU tests in addition to running L0 pre-merge pipeline.--post-merge(OPTIONAL) : Run the L0 post-merge pipeline instead of the ordinary L0 pre-merge pipeline.--extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx"(OPTIONAL) : Run the ordinary L0 pre-merge pipeline and specified test stages. Examples: --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx".--detailed-log(OPTIONAL) : Enable flushing out all logs to the Jenkins console. This will significantly increase the log volume and may slow down the job.--debug(OPTIONAL) : Experimental feature. Enable access to the CI container for debugging purpose. Note: Specify exactly one stage in thestage-listparameter to access the appropriate container environment. Note: Does NOT update GitHub check status.For guidance on mapping tests to stage names, see
docs/source/reference/ci-overview.mdand the
scripts/test_to_stage_mapping.pyhelper.kill
killKill all running builds associated with pull request.
skip
skip --comment COMMENTSkip testing for latest commit on pull request.
--comment "Reason for skipping build/test"is required. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.reuse-pipeline
reuse-pipelineReuse a previous pipeline to validate current commit. This action will also kill all currently running builds associated with the pull request. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.
Summary by CodeRabbit
✏️ Tip: You can customize this high-level summary in your review settings.